HPLC measurement of testicular long chain acyl-CoA synthetases with different substrate specificities

Lipids ◽  
1986 ◽  
Vol 21 (1) ◽  
pp. 11-16 ◽  
Author(s):  
W. McLean Grogan ◽  
Ellen G. Huth
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Kosuke Kawaguchi ◽  
Masashi Morita

ATP-binding cassette (ABC) transporters are one of the largest families of membrane-bound proteins and transport a wide variety of substrates across both extra- and intracellular membranes. They play a critical role in maintaining cellular homeostasis. To date, four ABC transporters belonging to subfamily D have been identified. ABCD1–3 and ABCD4 are localized to peroxisomes and lysosomes, respectively. ABCD1 and ABCD2 are involved in the transport of long and very long chain fatty acids (VLCFA) or their CoA-derivatives into peroxisomes with different substrate specificities, while ABCD3 is involved in the transport of branched chain acyl-CoA into peroxisomes. On the other hand, ABCD4 is deduced to take part in the transport of vitamin B12from lysosomes into the cytosol. It is well known that the dysfunction of ABCD1 results in X-linked adrenoleukodystrophy, a severe neurodegenerative disease. Recently, it is reported that ABCD3 and ABCD4 are responsible for hepatosplenomegaly and vitamin B12deficiency, respectively. In this review, the targeting mechanism and physiological functions of the ABCD transporters are summarized along with the related disease.


2001 ◽  
Vol 29 (2) ◽  
pp. 279-282 ◽  
Author(s):  
X. Liang ◽  
W. Le ◽  
D. Zhang ◽  
H. Schulz

The enzymes of mitochondrial β-oxidation are thought to be organized in at least two functional complexes, a membrane-bound, long-chain-specific β-oxidation system and a matrix system consisting of soluble enzymes with preferences for medium-chain and short-chain substrates. This hypothesis is supported by the observation that the inactivation of long-chain 3-ketoacyl-CoA thiolase by 4-bromotiglic acid (4-bromo-2-methylbut-2-enoic acid) causes the complete inhibition of palmitate β-oxidation even though 3-ketoacyl-CoA thiolase, which acts on 3-ketopalmitoyl-CoA, remains partly active. The observed substrate specificities of long-chain acyl-CoA dehydrogenase (LCAD) and very-long-chain acyl-CoA dehydrogenase prompt the suggestion that LCAD is a functional component of the long-chain-specific β-oxidation system. Altogether, a view is emerging of the organization of β-oxidation enzymes in mitochondria that supports the idea of intermediate channelling and explains the apparent absence of true intermediates of β-oxidation from mitochondria.


1991 ◽  
Vol 266 (7) ◽  
pp. 4214-4219
Author(s):  
H Tomoda ◽  
K Igarashi ◽  
J C Cyong ◽  
S Omura

2021 ◽  
Vol 27 ◽  
pp. 100749
Author(s):  
Eugène F. Diekman ◽  
Michel van Weeghel ◽  
Mayte Suárez-Fariñas ◽  
Carmen Argmann ◽  
Pablo Ranea-Robles ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document