Synthesis and characterization of Pb(Zr0.54Ti0.46)O3 thin films on (100)Si using textured YBa2Cu3O7−δ and yttria-stabilized zirconia buffer layers by laser physical vapor deposition technique

1994 ◽  
Vol 23 (9) ◽  
pp. 879-882 ◽  
Author(s):  
P. Tiwari ◽  
T. Zheleva ◽  
J. Narayan
1992 ◽  
Vol 285 ◽  
Author(s):  
P. Tiwari ◽  
T. Zheleva ◽  
A. Morimoto ◽  
V.N. Shukla ◽  
J. Narayan

ABSTRACTWe have fabricated high-quality <001> textured Pb(Zr0.54Ti0.46)O3 (PZT) thin films on (001)Si with interposing <001> textured YBa2Cu3O7−δ (YBCO) and yttria-stabilized zirconia (YSZ) buffer layers using pulsed laser deposition (KrF excimer laser, λ=248 nm, τ=20 nanoseconds). The YBCO layer provides a seed for PZT growth and can also act as an electrode for the PZT films, whereas YSZ provides a diffusion barrier as well as a seed for the growth of YBCO films on (001)Si. These heterostructures were characterized using X-ray diffraction, high-resolution transmission electron microscopy and Rutherford backscattering techniques. The YSZ films were deposited in oxygen ambient (∼9X10−4 torr) at 775°C on (001)Si substrate having <001>YSZ// <001>Si texture. The YBCO thin films were deposited in-situ in oxygen ambient (200 mtorr) at 650°C. Temperature and oxygen ambient for the PZT deposition were optimized to be 530°C and 0.4–0.6 torr, respectively. The laser fluence to deposit this multistructure was 2.5–5.0 J/cm2. The <001> textured perovskite PZT films showed a dielectric constant of 800–1000, a saturation polarization of 37.81 μC/cm2, remnant polarization of 24.38 μC/cm2 and a coersive field of 125 kV/cm. The effects of processing parameters on microstructure and ferroelectric properties of PZT films and device implications of these structures are discussed.


Sign in / Sign up

Export Citation Format

Share Document