Preparation of Pb(Zr0.54Ti0.46)O3 Thin Films on (100)Si Using Textured YBa2Cu3O7−δ and Yttria-Stabilized Zirconia Buffer Layers by Laser Physical Vapor Deposition Technique

1992 ◽  
Vol 285 ◽  
Author(s):  
P. Tiwari ◽  
T. Zheleva ◽  
A. Morimoto ◽  
V.N. Shukla ◽  
J. Narayan

ABSTRACTWe have fabricated high-quality <001> textured Pb(Zr0.54Ti0.46)O3 (PZT) thin films on (001)Si with interposing <001> textured YBa2Cu3O7−δ (YBCO) and yttria-stabilized zirconia (YSZ) buffer layers using pulsed laser deposition (KrF excimer laser, λ=248 nm, τ=20 nanoseconds). The YBCO layer provides a seed for PZT growth and can also act as an electrode for the PZT films, whereas YSZ provides a diffusion barrier as well as a seed for the growth of YBCO films on (001)Si. These heterostructures were characterized using X-ray diffraction, high-resolution transmission electron microscopy and Rutherford backscattering techniques. The YSZ films were deposited in oxygen ambient (∼9X10−4 torr) at 775°C on (001)Si substrate having <001>YSZ// <001>Si texture. The YBCO thin films were deposited in-situ in oxygen ambient (200 mtorr) at 650°C. Temperature and oxygen ambient for the PZT deposition were optimized to be 530°C and 0.4–0.6 torr, respectively. The laser fluence to deposit this multistructure was 2.5–5.0 J/cm2. The <001> textured perovskite PZT films showed a dielectric constant of 800–1000, a saturation polarization of 37.81 μC/cm2, remnant polarization of 24.38 μC/cm2 and a coersive field of 125 kV/cm. The effects of processing parameters on microstructure and ferroelectric properties of PZT films and device implications of these structures are discussed.

2009 ◽  
Vol 421-422 ◽  
pp. 111-114
Author(s):  
Hyun Young Go ◽  
Naoki Wakiya ◽  
Takanori Kiguchi ◽  
Tomohiko Yoshioka ◽  
Osamu Sakurai ◽  
...  

We investigated electrical properties of epitaxial Mn doped bismuth ferrite BiFe0.97Mn0.03O3 (BFMO) thin films with different crystal orientations deposited on Si substrates with appropriate buffer layers. Epitaxial SrRuO3 (SRO) thin films with (001), (101), and (111) orientations were grown on CeO2/yttria-stabilized zirconia (YSZ)/Si(001) substrates and YSZ/Si(001), respectively, by the insertion of MgO and TiO2 atomic layers using pulsed-laser deposition (PLD). Using spin coating, we deposited BFMO thin films onto orientated SRO thin films. The BFMO orientation followed the SRO orientation. The Pr values of the BFMO were ordered as follows {111}>{110}>{100}, which is the same as that predicted by crystallographic considerations. The largest Pr value of the {111} orientation is 76 μC/cm2 at 100 kHz, 25°C.


1991 ◽  
Vol 79-82 ◽  
pp. 941-946
Author(s):  
K. Hradil ◽  
Harald Schmidt ◽  
W. Hösler ◽  
W. Wersing ◽  
F. Frey ◽  
...  

2018 ◽  
Vol 13 (10) ◽  
pp. 1493-1498
Author(s):  
A. F. Qasrawi

In this article, the design and performance of the CdSe which are deposited onto thin films of Yb metal is reported and discussed. The thin films of CdSe which are deposited by the physical vapor deposition technique are observed to exhibit slightly deformed hexagonal polycrystalline nature with excess amount of Cd as confirmed by the X-ray, energy dispersive X-ray spectroscopy and scanning electron microscopy techniques. The n-type CdSe is also found to form a Schottky barrier of tunneling type when sandwiched between Yb and carbon. The quantum mechanical tunneling mechanism in this device which was tested and modeled in the frequency domain of 10–150 MHz is found to exhibit average intersite separations of ∼5 nm. The tunneling device exhibited a widening in the depletion region associated with significantly large capacitance tunability in the studied frequency domain. On the other hand, as an optoelectronic device, the Yb/n-CdSe/C Schottky diode exhibited a responsivity of ∼0.10 A/W, photosensitivity of 6.5 × 104 and external quantum efficiency of 54% when biased with 1.0 V and exposed to laser light of wavelength of 406 nm.


Sign in / Sign up

Export Citation Format

Share Document