Physical and electrical properties of CoSi2 thin films on silicon, and on silicon substrates buffered with SiO2 and yttria-stabilized zirconia, using the laser physical vapor deposition technique

1992 ◽  
Vol 14 (1) ◽  
pp. 23-29 ◽  
Author(s):  
P. Tiwari ◽  
M. Bhatnagar ◽  
R. Dat ◽  
J. Narayan
1992 ◽  
Vol 285 ◽  
Author(s):  
P. Tiwari ◽  
T. Zheleva ◽  
A. Morimoto ◽  
V.N. Shukla ◽  
J. Narayan

ABSTRACTWe have fabricated high-quality <001> textured Pb(Zr0.54Ti0.46)O3 (PZT) thin films on (001)Si with interposing <001> textured YBa2Cu3O7−δ (YBCO) and yttria-stabilized zirconia (YSZ) buffer layers using pulsed laser deposition (KrF excimer laser, λ=248 nm, τ=20 nanoseconds). The YBCO layer provides a seed for PZT growth and can also act as an electrode for the PZT films, whereas YSZ provides a diffusion barrier as well as a seed for the growth of YBCO films on (001)Si. These heterostructures were characterized using X-ray diffraction, high-resolution transmission electron microscopy and Rutherford backscattering techniques. The YSZ films were deposited in oxygen ambient (∼9X10−4 torr) at 775°C on (001)Si substrate having <001>YSZ// <001>Si texture. The YBCO thin films were deposited in-situ in oxygen ambient (200 mtorr) at 650°C. Temperature and oxygen ambient for the PZT deposition were optimized to be 530°C and 0.4–0.6 torr, respectively. The laser fluence to deposit this multistructure was 2.5–5.0 J/cm2. The <001> textured perovskite PZT films showed a dielectric constant of 800–1000, a saturation polarization of 37.81 μC/cm2, remnant polarization of 24.38 μC/cm2 and a coersive field of 125 kV/cm. The effects of processing parameters on microstructure and ferroelectric properties of PZT films and device implications of these structures are discussed.


1989 ◽  
Vol 158 ◽  
Author(s):  
N. Biunno ◽  
J. Krishnaswamy ◽  
S. Sharan ◽  
L. Ganapathi ◽  
J. Narayan

ABSTRACTWe have investigated the formation of various multilayer thin films by the laser physical vapor deposition technique. A multi stage target holder was constructed to perform all process steps in-situ; target/substrate cleaning, deposition, and annealing. The laser physical vapor deposition technique offers many advantages over conventional physical vapor techniques, such as, lower substrate temperature, microstructural control, and very low contamination levels. Film thickness can be controlled from near atomic to micron dimensions. A layer-by-layer (two dimensional) growth can be achieved, resulting in nonequilibrium structures. The films were analyzed using cross-section and high resolution transmission electron microscopy (TEM). The significant reduction in substrate temperature for the formation of high quality multilayer and epitaxial films opens up many new areas of applications requiring reduced thermal-budget processing.


Sign in / Sign up

Export Citation Format

Share Document