Degradation of the reflectivity of white anodic-oxide coatings in thermal vacuum treatment

1997 ◽  
Vol 64 (5) ◽  
pp. 678-682 ◽  
Author(s):  
V. N. Kuznetsov ◽  
A. A. Lisachenko ◽  
I. V. Ivanova ◽  
V. A. Konnov
Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 348
Author(s):  
Tatyana Olshanskaya ◽  
Elena Fedoseeva

This work is about the study of the correlation of pore formation in welded joints of Al–MG–LI alloy with zirconium additives with the state of the base metal, thermal vacuum treatment, and welding technologies MIG and EBW. Metallographic analysis has been carried out, the phase composition of the alloy and weld metal has been investigated, and thermal cycles of welding have been calculated, allowing to estimate the residence time of metal in the alloying zone and weld metal in the liquid state. The nature of the allocation of strengthening fine-dispersed phases in the welded joints of the alloy has been determined. The regularity and character of pore formation in welded joints depending on the applicable thermal vacuum treatment (TVT) and welding technology have been revealed. It was established that TVT with subsequent hardening and aging has no effect on the phase composition of the alloy. However, this type of treatment contributes to the formation of a more homogeneous and uniform nature of the separation of fine-dispersed strengthening phases. It was revealed that the MIG technology (metal with and without TVT) is characterized by a large length of the fusion zone, the high residence time of metal in the fusion zone and weld metal in the liquid state, and the formation of pores. Phase formation in the temperature range of the beginning and end of the alloy crystallization occurs not only in the weld at the final stage of crystallization but also in the fusion zone, which may induce pore formation, whereas EBW welding shows the opposite trend and no pores. It was found that EBW technology prevents pore formation and makes it possible to obtain welded joints of 1420 Al alloys of the required quality.


2019 ◽  
Vol 92 (7) ◽  
pp. 883-892
Author(s):  
A. S. Kochetkova ◽  
E. A. Sosnov ◽  
A. A. Malkov ◽  
V. V. Antipov ◽  
N. A. Kulikov ◽  
...  

2019 ◽  
Vol 26 (02) ◽  
pp. 1850143
Author(s):  
SAEED NIYAZBAKHSH ◽  
KAMRAN AMINI ◽  
FARHAD GHARAVI

Anodic oxide coatings are applied on aluminum alloys in order to improve corrosion resistance and to increase hardness and wear resistance. In the current study, a hard anodic coating was applied on AA7075-T6 aluminum alloy. To survey the anodizing temperature (electrolyte temperature) effect, three temperatures, namely, [Formula: see text]C, 0∘C and 5∘C were chosen and the samples were sealed in boiling water and sodium dichromate to study the role of sealing. For measuring the oxide coatings porosity and hardness and also for comparing the samples’ wear resistance field-emission scanning electron microscopy (FESEM), microhardness test and pin-on-disk method were utilized, respectively. The results showed that by increasing the anodizing temperature, hardness and consequently wear resistance decreased so that hardness and weight loss in the samples with no sealing decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg at [Formula: see text]C to 405 and 358[Formula: see text]HV and 1.05 and 1.12[Formula: see text]mg at 0∘C and 5∘C, respectively, which is due to the porosity increment by increasing the anodizing temperature. Also, sealing in boiling water and dichromate contributed to soft phases and coating hydration, which resulted in a decrease in hardness and wear resistance. Hardness and weight loss in the coated samples at [Formula: see text]C decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg in the samples with no sealing to 435 and 417[Formula: see text]HV and 0.72 and 0.83[Formula: see text]mg in the samples sealed in boiling water and dichromate, respectively.


1971 ◽  
Vol 22 (8) ◽  
pp. 400-403 ◽  
Author(s):  
Toshiro TAKAHASHI ◽  
Toshihiro NAGANO ◽  
Kenji WADA ◽  
Masashi IKEGAYA ◽  
Hideo TAGAI
Keyword(s):  

Author(s):  
D.N. Simagin ◽  
◽  
A.A. Gravin ◽  
V.Yu. Kulakov ◽  
Yu.V. Litovka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document