Effect of a Thermal-Vacuum Treatment and X-Ray Radiation on the Morphology and Electrical Properties of Titanium Oxide Nanocoatings

2019 ◽  
Vol 92 (7) ◽  
pp. 883-892
Author(s):  
A. S. Kochetkova ◽  
E. A. Sosnov ◽  
A. A. Malkov ◽  
V. V. Antipov ◽  
N. A. Kulikov ◽  
...  
Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 348
Author(s):  
Tatyana Olshanskaya ◽  
Elena Fedoseeva

This work is about the study of the correlation of pore formation in welded joints of Al–MG–LI alloy with zirconium additives with the state of the base metal, thermal vacuum treatment, and welding technologies MIG and EBW. Metallographic analysis has been carried out, the phase composition of the alloy and weld metal has been investigated, and thermal cycles of welding have been calculated, allowing to estimate the residence time of metal in the alloying zone and weld metal in the liquid state. The nature of the allocation of strengthening fine-dispersed phases in the welded joints of the alloy has been determined. The regularity and character of pore formation in welded joints depending on the applicable thermal vacuum treatment (TVT) and welding technology have been revealed. It was established that TVT with subsequent hardening and aging has no effect on the phase composition of the alloy. However, this type of treatment contributes to the formation of a more homogeneous and uniform nature of the separation of fine-dispersed strengthening phases. It was revealed that the MIG technology (metal with and without TVT) is characterized by a large length of the fusion zone, the high residence time of metal in the fusion zone and weld metal in the liquid state, and the formation of pores. Phase formation in the temperature range of the beginning and end of the alloy crystallization occurs not only in the weld at the final stage of crystallization but also in the fusion zone, which may induce pore formation, whereas EBW welding shows the opposite trend and no pores. It was found that EBW technology prevents pore formation and makes it possible to obtain welded joints of 1420 Al alloys of the required quality.


1997 ◽  
Vol 64 (5) ◽  
pp. 678-682 ◽  
Author(s):  
V. N. Kuznetsov ◽  
A. A. Lisachenko ◽  
I. V. Ivanova ◽  
V. A. Konnov

2014 ◽  
Vol 11 (2) ◽  
pp. 584-589
Author(s):  
Baghdad Science Journal

Preparation of superposed thin film (CdTe)1-xSex / ZnS) with concentration of (x= 0.1, 0.3, 0.5) at a temperature of substrate (Ts= 80 0C) by using Thermal Vacuum Evaporation System. The measurement of X-ray diffraction shows that the compounds CdTe, ZnS, (CdTe)1-xSex and (CdTe)1-xSex / ZnS have a polycrystalline structure, the C-V characteristic shows that the capacitance degrease by increasing the concentration (x) in reverse bias, while the I-V characteristic shows the current dark (Id) increase in forward and reverse bias by increasing (x) and the photocurrent (Iph) increase in reverse bias by increasing the concentration (x), the values of photocurrent are greater than from the values of the dark current for all concentrations.


Author(s):  
A. Kareem Dahash Ali ◽  
Nihad Ali Shafeek

This study included the fabrication of    compound (Tl2-xHgxBa2-ySryCa2Cu3O10+δ) in a manner solid state and under hydrostatic pressure ( 8 ton/cm2) and temperature annealing(850°C), and determine the effect of the laser on the structural and electrical properties elements in the compound, and various concentrations of x where (x= 0.1,0.2,0.3 ). Observed by testing the XRD The best ratio of compensation for x is 0.2 as the value of a = b = 5.3899 (A °), c = 36.21 (A °) show that the installation of four-wheel-based type and that the best temperature shift is TC= 142 K  .When you shine a CO2 laser on the models in order to recognize the effect of the laser on these models showed the study of X-ray diffraction of these samples when preparing models with different concentrations of the values ​​of x, the best ratio of compensation is 0.2 which showed an increase in the values ​​of the dimensions of the unit cell a=b = 5.3929 (A °), c = 36.238 (A°). And the best transition temperature after shedding laser is TC=144 K. 


2021 ◽  
pp. 2100201
Author(s):  
Philipp Jordt ◽  
Stjepan B. Hrkac ◽  
Jorit Gröttrup ◽  
Anton Davydok ◽  
Christina Krywka ◽  
...  

Author(s):  
Mingqiang Zhong ◽  
Qin Feng ◽  
Changlai Yuan ◽  
Xiao Liu ◽  
Baohua Zhu ◽  
...  

AbstractIn this work, the (1−x)Bi0.5Na0.5TiO3-xBaNi0.5Nb0.5O3 (BNT-BNN; 0.00 ⩽ x ⩽ 0.20) ceramics were prepared via a high-temperature solid-state method. The crystalline structures, photovoltaic effect, and electrical properties of the ceramics were investigated. According to X-ray diffraction, the system shows a single perovskite structure. The samples show the normal ferroelectric loops. With the increase of BNN content, the remnant polarization (Pr) and coercive field (Ec) decrease gradually. The optical band gap of the samples narrows from 3.10 to 2.27 eV. The conductive species of grains and grain boundaries in the ceramics are ascribed to the double ionized oxygen vacancies. The open-circuit voltage (Voc) of ∼15.7 V and short-circuit current (Jsc) of ∼1450 nA/cm2 are obtained in the 0.95BNT-0.05BNN ceramic under 1 sun illumination (AM1.5G, 100 mW/cm2). A larger Voc of 23 V and a higher Jsc of 5500 nA/cm2 are achieved at the poling field of 60 kV/cm under the same light conditions. The study shows this system has great application prospects in the photovoltaic field.


2012 ◽  
Vol 472-475 ◽  
pp. 1451-1454
Author(s):  
Xue Hui Wang ◽  
Wu Tang ◽  
Ji Jun Yang

The porous Cu film was deposited on soft PVDF substrate by magnetron sputtering at different sputtering pressure. The microstructure and electrical properties of Cu films were investigated as a function of sputtering pressure by X-ray diffraction XRD and Hall effect method. The results show that the surface morphology of Cu film is porous, and the XRD revealed that there are Cu diffraction peaks with highly textured having a Cu-(220) or a mixture of Cu-(111) and Cu-(220) at sputtering pressure 0.5 Pa. The electrical properties are also severely influenced by sputtering pressure, the resistivity of the porous Cu film is much larger than that fabricated on Si substrate. Furthermore, the resistivity increases simultaneously with the increasing of Cu film surface aperture, but the resistivity of Cu film still decreases with the increasing grain size. It can be concluded that the crystal structure is still the most important factor for the porous Cu film resistivity.


Sign in / Sign up

Export Citation Format

Share Document