Influence of the magnetic field on the angular power spectrum of an electromagnetic wave multiply scattered in a turbulent collisional magnetized plasma

1999 ◽  
Vol 42 (12) ◽  
pp. 1025-1031
Author(s):  
A. V. Aistov ◽  
V. G. Gavrilenko ◽  
G. V. Jandiery
1983 ◽  
Vol 30 (2) ◽  
pp. 179-192 ◽  
Author(s):  
E. Mjølhus

The problem of linear conversion of an ordinary polarized electromagnetic wave in a magnetized plasma with density gradient parallel to the magnetic field is considered. An expression for the conversion coefficient as a function of angle of incidence, WKB parameter and magnetic field is obtained. The magnetic field leads to a narrowing of the range of angles of incidence leading to linear conversion, compared with the unmagnetized case.


1984 ◽  
Vol 32 (2) ◽  
pp. 331-346 ◽  
Author(s):  
H. C. Barr ◽  
T. J. M. Boyd ◽  
R. Rankin

The effects of a d.c. magnetic field on stimulated Raman sidescatter from laser-produced plasmas is studied. For exact sidescatter along the magnetic field, the Raman instability separates into two distinct decays in which the scattered light is either a right (RHCP) or left (LHCP) circularly polarized electromagnetic wave. Growth rates of the instabilities can be enhanced in the former case but are diminished in the latter. The magnetic field induced effects are greatest near the quarter critical density where frequency shifts can be especially significant, being equal to ± ¼Ωc for decay into RHCP and LHCP waves, respectively.


2021 ◽  
Vol 923 (2) ◽  
pp. 208
Author(s):  
Siddhartha Gupta ◽  
Damiano Caprioli ◽  
Colby C. Haggerty

Abstract A strong super-Alfvénic drift of energetic particles (or cosmic rays) in a magnetized plasma can amplify the magnetic field significantly through nonresonant streaming instability (NRSI). While the traditional analysis is done for an ion current, here we use kinetic particle-in-cell simulations to study how the NRSI behaves when it is driven by electrons or by a mixture of electrons and positrons. In particular, we characterize the growth rate, spectrum, and helicity of the unstable modes, as well the level of the magnetic field at saturation. Our results are potentially relevant for several space/astrophysical environments (e.g., electron strahl in the solar wind, at oblique nonrelativistic shocks, around pulsar wind nebulae), and also in laboratory experiments.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Alessandro Geraldini ◽  
F. I. Parra ◽  
F. Militello

The magnetic presheath is a boundary layer occurring when magnetized plasma is in contact with a wall and the angle $\unicode[STIX]{x1D6FC}$ between the wall and the magnetic field $\boldsymbol{B}$ is oblique. Here, we consider the fusion-relevant case of a shallow-angle, $\unicode[STIX]{x1D6FC}\ll 1$ , electron-repelling sheath, with the electron density given by a Boltzmann distribution, valid for $\unicode[STIX]{x1D6FC}/\sqrt{\unicode[STIX]{x1D70F}+1}\gg \sqrt{m_{\text{e}}/m_{\text{i}}}$ , where $m_{\text{e}}$ is the electron mass, $m_{\text{i}}$ is the ion mass, $\unicode[STIX]{x1D70F}=T_{\text{i}}/ZT_{\text{e}}$ , $T_{\text{e}}$ is the electron temperature, $T_{\text{i}}$ is the ion temperature and $Z$ is the ionic charge state. The thickness of the magnetic presheath is of the order of a few ion sound Larmor radii $\unicode[STIX]{x1D70C}_{\text{s}}=\sqrt{m_{\text{i}}(ZT_{\text{e}}+T_{\text{i}})}/ZeB$ , where e is the proton charge and $B=|\boldsymbol{B}|$ is the magnitude of the magnetic field. We study the dependence on $\unicode[STIX]{x1D70F}$ of the electrostatic potential and ion distribution function in the magnetic presheath by using a set of prescribed ion distribution functions at the magnetic presheath entrance, parameterized by $\unicode[STIX]{x1D70F}$ . The kinetic model is shown to be asymptotically equivalent to Chodura’s fluid model at small ion temperature, $\unicode[STIX]{x1D70F}\ll 1$ , for $|\text{ln}\,\unicode[STIX]{x1D6FC}|>3|\text{ln}\,\unicode[STIX]{x1D70F}|\gg 1$ . In this limit, despite the fact that fluid equations give a reasonable approximation to the potential, ion gyro-orbits acquire a spatial extent that occupies a large portion of the magnetic presheath. At large ion temperature, $\unicode[STIX]{x1D70F}\gg 1$ , relevant because $T_{\text{i}}$ is measured to be a few times larger than $T_{\text{e}}$ near divertor targets of fusion devices, ions reach the Debye sheath entrance (and subsequently the wall) at a shallow angle whose size is given by $\sqrt{\unicode[STIX]{x1D6FC}}$ or $1/\sqrt{\unicode[STIX]{x1D70F}}$ , depending on which is largest.


1979 ◽  
Vol 22 (1) ◽  
pp. 85-96
Author(s):  
Joseph E. Willett ◽  
Sinan Bilikmen ◽  
Behrooz Maraghechi

The stimulated backscattering of electromagnetic ordinary waves from extraordinary waves propagating normal to a magnetic field in a plasma of finite length is studied. A pair of coupled differential equations for the amplitudes of the backscattered and scatterer waves is derived from Maxwell's equations and the moment equations for an inhomogeneous magnetized plasma. Solution of the coupled equations for a homogeneous plasma yields an expression for the growth rate of the absolute instability as a function of plasma length and damping rates of the product waves. The convective regime in which only spatial amplification occurs is discussed. A numerical study of the effects of the magnetic field on Raman and Brillouin backscattering is presented.


1980 ◽  
Vol 24 (1) ◽  
pp. 157-162 ◽  
Author(s):  
J. P. Sheerin ◽  
R. S. B. Ong

A nonlinear Alfvén wave structure with axial symmetry about the line of force of an ambient magnetic field is presented. The solitary wave forms a ‘ring’ shaped waveguide along the magnetic field line.


1983 ◽  
Vol 30 (1) ◽  
pp. 125-131 ◽  
Author(s):  
V. Krivenski ◽  
A. Orefice

In order to study the absorption and emission properties of a magnetized plasma in the electron cyclotron range of frequencies, the weakly relativistic (Shkarofsky) plasma dispersion functions are simply and exactly expressed in terms of the Z function. This gives a useful working form to the dielectric tensor, for any wave vector and harmonic number, covering also the case of electron Maxwellian distributions drifting along the magnetic field.


1987 ◽  
Vol 14 (7) ◽  
pp. 681-684 ◽  
Author(s):  
E. Möbius ◽  
M. Scholer ◽  
N. Sckopke ◽  
H. Lühr ◽  
G. Paschmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document