Determination of optical density at the center of an absorption line contour from the spacing between the frequencies of the two-component radiation spectrum of a laser having a phase-polarization selector

1997 ◽  
Vol 64 (6) ◽  
pp. 749-754
Author(s):  
L. P. Runets
Author(s):  
B.A. Lapshinov ◽  
◽  
N.I. Timchenko ◽  

Spectral pyrometry was used to determine the surface temperature distribution of Si, Nb, Cu, and graphite samples when they were locally heated by continuous radiation of an Nd:YAG laser (λ = 1.064 μm). With prolonged exposure to radiation, a stationary temperature field was established in the samples. The thermal spectra were recorded with a small spectrometer in the visible range in the temperature range above 850 K. The optical fiber used to transmit the radiation spectrum to the spectrometer had an additional diaphragm with a diameter of 1 mm located at a certain distance from the fiber end, which ensured the locality of the recorded spectra. The optical fiber moved continuously along the sample, and the spectrometer recorded up to 100 spectra with a frequency of 5-10 Hz. The temperature profile of the samples was calculated based on the results of processing the spectra using the Spectral Pyrometry program.


2009 ◽  
Vol 10 (9) ◽  
pp. 907-915 ◽  
Author(s):  
Koichi M.T. Yamada ◽  
Atsushi Onae ◽  
Feng-Lei Hong ◽  
Hajime Inaba ◽  
Tadao Shimizu

2013 ◽  
Vol 724-725 ◽  
pp. 1625-1629
Author(s):  
Peter Rantuch ◽  
Tomáš Chrebet ◽  
Karol Balog

This paper deals with expanded polystyrene (EPS) as a potential source of smoke. We compared specific optical density of smoke from EPS and EPS strengthened by glass fibre mash and plaster which is used in external thermal insulation composite systems (ETICS). There was used testing method by ISO 5659 Plastics Smoke generation Part 2: Determination of optical density by a single-chamber test. The samples were exposed to a constant 50 kW.m-2 of thermal radiation. There was not used a pilot burner. During flame combustion samples evolved high amount of smoke. Samples from EPS released more smoke like samples with ETICS cover.


1987 ◽  
Vol 252 (5) ◽  
pp. H1031-H1040 ◽  
Author(s):  
M. L. Ellsworth ◽  
R. N. Pittman ◽  
C. G. Ellis

We present a computer-aided videodensitometric method for the determination of oxygen saturation in red blood cells flowing through capillaries of the hamster cheek pouch retractor muscle. The optical density (OD) of red blood cells is determined at two wavelengths. At the first, 431 nm, there is a maximum difference between absorption by oxygen deoxyhemoglobin. At the second, 420 nm, absorption is equal for the two absorbing species (isosbestic wavelength). In capillaries of the retractor muscle a relationship between oxygen saturation (S) and the following OD ratio was obtained as S = -1.71 (OD431/OD420) + 2.20. The error (95% confidence interval) in oxygen saturation associated with a determination of the OD ratio is estimated to be +/- 4.8%. The computerization of the method employs a frame-by-frame analysis of the light intensity over a selected capillary segment. The light intensity waveform along the segment is digitized and the minimum (I) and maximum (I0) light intensities are used to compute an optical density (OD = log10 [I0/I]). These minimum and maximum intensities correspond to the presence and absence of a red blood cell, respectively. The method permits the off-line analysis of videotaped scenes and provides a means of assessing the extent of temporal and spatial heterogeneity of oxygen saturation in selected capillary networks. The method has been developed for use in capillaries in transilluminated striated muscle but should be generally applicable to the measurement of capillary oxygen saturation in other tissues.


1990 ◽  
Vol 38 (1) ◽  
pp. 87-94 ◽  
Author(s):  
M W Wessendorf ◽  
S J Tallaksen-Greene ◽  
R M Wohlhueter

7-Amino-4-methylcoumarin-3-acetic acid (AMCA) has been found to be a useful fluorophore for immunofluorescence. The present study describes a spectrophotometric method for determining the ratio of moles AMCA to moles protein (or the f/p ratio) in an AMCA-conjugated IgG. The concentration of a substance absorbing light can be determined spectrophotometrically using Beer's Law: Absorbance = Concentration x Extinction coefficient. From Beer's law, one can derive the following formula for determining the f/p ratio of AMCA-IgG conjugates: f/p = (epsilon 280IgG).A350 - (epsilon 350IgG).A280/(epsilon 350AMCA).A280 - (epsilon 280AMCA).A350 where A is the optical density of the conjugate at the given wavelength and epsilon is the extinction coefficient of a substance at the wavelength specified. Using conjugates of model proteins, it was found that the extinction coefficients of the AMCA moiety of AMCA-conjugated protein were 1.90 x 10(4) at 350 nm and 8.29 x 10(3) at 280 nm. Similarly, it was found that the extinction coefficients of swine IgG were 1.56 x 10(3) at 350 nm and 1.26 x 10(5) at 280 nm. Thus, for AMCA-conjugated swine IgG: f/p = (1.26 x 10(5)).A350 - (1.56 x 10(3)).A280/(1.47 x 10(4)).A280 - (6.42 x 10(3)).A350 [corrected]. Based on this formula, the f/p ratios of some AMCA-IgG conjugates useful for immunohistochemistry have been found to range between 6 and 24.


1991 ◽  
Vol 24 (3) ◽  
pp. 451-470 ◽  
Author(s):  
Hesham Salem ◽  
Magda El-Maamli ◽  
Mohamed El-Sadek ◽  
Afaf Aboul Kheir

1997 ◽  
Author(s):  
Mikhail Y. Kataev ◽  
Artur A. Mitsel ◽  
Olga Y. Nikiforova ◽  
V. A. Fedorov

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Leonard Nitzsche ◽  
Jens Goldschmidt ◽  
Armin Lambrecht ◽  
Jürgen Wöllenstein

Abstract A dual comb spectrometer is used as gas sensor for the parallel detection of nitrous oxide (N2O) and carbon monoxide (CO). These gases have overlapping absorption features in the mid-infrared (MIR) at a wavelength of 4.6 µm. With a spectra acquisition rate of 10 Hz, concentrations of 50 ppm N2O and 30 ppm CO are monitored with a relative precision of 6 × 10 − 3 6\times {10^{-3}} and 3 × 10 − 3 3\times {10^{-3}} respectively. The limit of detections are 91 ppb for N2O and 50 ppb for CO for an integration time of 25 s. The system exhibits a linear sensitivity from 2 ppm to 100 ppm with coefficients of determination of 0.99998 for N2O and 0.99996 for CO.


Sign in / Sign up

Export Citation Format

Share Document