In vitro effect of prostaglandins, prostaglandin endoperoxides and thromboxane on rat intestinal alkaline phosphatase and (Ca2+-Mg2+) adenosine triphosphatase

1981 ◽  
Vol 3 (4) ◽  
pp. 401-406
Author(s):  
R. Parthasarathy ◽  
K. Radha Shanmugasundaram
Author(s):  
Anchal Trivedi ◽  
Aparna Misra ◽  
Esha Sarkar ◽  
Anil K. Balapure

Background: In recent years, great progress has been made in reducing the high level of malaria suffering worldwide. There is a great need to evaluate drug resistance reversers and consider new medicines against malaria. There are many approaches to the development of antimalarial drugs. Specific concerns must be taken in to account in these approaches, in particular there requirement for very in expensive and simple use of new therapies and the need to limit drug discovery expenses. Important ongoing efforts are the optimisation of treatment with available medications, including the use of combination therapy. The production of analogs of known agents and the identification of natural products, the use of compounds originally developed against other diseases, the assessment of overcoming drug resistance and the consideration of new therapeutic targets. Liver and spleen are the important organs which are directly associated with malarial complications. Aim: An analysis the Activity of Adenosine Triphosphatase, Aryl Hyrocarbon Hydroxylase Enzymes and Malondialdehyde in spleen Explant Culture. Objective: To determine in-Vitro Effect of Chlorquine and Picroliv on Plasmodium Berghei Induced Alterations in the Activity of Adenosine Triphosphatase, Aryl Hyrocarbon Hydroxylase Enzymes and Malondialdehyde in spleen Explant Culture. Material and method: 1-Histological preparation of spleen explants for paraplast embedding 2-Biochemicalstudies (Enzymes (Atpase, ALP&GST) and the level of protein, Malondialdehyde (MDA). Result: Splenomegalyis one of the three main diagnostic parameters of malaria infection besides fever and anaemia. Many enzymes present in the liver and spleen may also be altered or liberated under different pathological conditions. Enzymes (ATPase, ALP&GST) and the level of protein, Malondialdehyde (MDA) content was found to increase in the liver and spleen explants during malarial infection. In the liver and spleen derived from parasitized CQ treated animals, the activity of all the above enzymes (ATPase, ALP&GST) and the level of protein & MDA of liver/spleen reversed towards the normal for all the 4or3 days of incubations. Picroliv efficacy decreased with the increment of parasitaemia and at 60%parasitaemia. Conclusion: Alkalinephosphatase (ALP) was found to increase with increasing parasitaemia. After the addition of Picroliv to the medium, a decrement in the activity was observed up to day 4 of culture.A similar positive effect of Picroliv was observed on the ATPase and ALP activity of spleen explants.DNA and protein contents also increased in the parasitized liver cultured in the presence of picroliv.On the contrary, in the spleen explants DNA, protein and MDA content were found to decrease after Picroliv supplementation to the culture medium.


1999 ◽  
Vol 276 (4) ◽  
pp. G800-G807 ◽  
Author(s):  
Jeong H. Kim ◽  
Shufen Meng ◽  
Amy Shei ◽  
Richard A. Hodin

We have used sodium butyrate-treated HT-29 cells as an in vitro model system to study the molecular mechanisms underlying intestinal alkaline phosphatase (IAP) gene activation. Transient transfection assays using human IAP-CAT reporter genes along with DNase I footprinting were used to localize a critical cis element (IF-III) corresponding to the sequence 5′-GACTGGGCGGGGTCAAGATGGA-3′. Deletion of the IF-III element resulted in a dramatic reduction in reporter gene activity, and IF-III was shown to function in the context of a heterologous (SV40) promoter in a cell type-specific manner, further supporting its functional role in IAP transactivation. Electrophoretic mobility shift assays revealed that IF-III binds Sp1 and Sp3, but these factors comprise only a portion of the total nuclear binding and appear to mediate only a small portion of its transcriptional activity. IF-III does not correspond to any previously characterized regulatory region from other intestine-specific genes. We have thus identified a novel, Sp1-related cis-regulatory element in the human IAP gene that appears to play a role in its transcriptional activation during differentiation in vitro.


2019 ◽  
Vol 44 (6) ◽  
pp. 632-636 ◽  
Author(s):  
Gary William Boyd ◽  
Marion Drew ◽  
Shannon Ward ◽  
Marianne Baird ◽  
Christopher Connaboy ◽  
...  

Branched-chain amino acids (BCAA) are used as nutritional support for patients with a range of conditions including liver cirrhosis and in-born errors of amino acid metabolism, and they are commonly used “sports” or exercise supplements. The effects of the BCAA on the in-vitro activity of calf intestinal alkaline phosphatase (EC. 3.1.3.1) were studied. All three BCAA were found to be uncompetitive inhibitors of the enzyme with L-leucine being the most potent ([Formula: see text] = 24.9 mmol/L) and L-valine, the least potent ([Formula: see text] = 37 mmol/L). Mixed BCAA are able to act in combination to inhibit the enzyme. Given the important role of intestinal alkaline phosphatase in gut homeostasis, these findings have potential implications for those taking high levels of BCAA as supplements.


Parasitology ◽  
1967 ◽  
Vol 57 (4) ◽  
pp. 665-671 ◽  
Author(s):  
Walborg Thorsell

The effect of hexachlorophene, a fasciolicide, on some enzyme systems in the liver fluke was studied. The enzymes were adenosine triphosphatase, succinate oxidase and cholinesterase. Adenosine triphosphatase was activated, whereas succinate oxidase and cholinesterase were inhibited when homogenized flukes were incubated in some concentrations of hexachlorophene. Of the three enzyme systems studied in flukes killed by hexachlorophene, only the succinate system showed reduced activity, whereas the other two showed almost normal activities. The study indicates that biochemical changes are associated with the effect of hexachlorophene on the liver fluke.Thanks are due to Dr C. Grant for critical examination of the language, to Miss Maarja Kippar for valuable help with the experiments and to Mrs Astrid Holmström for the typing of the manuscript.This work was supported by grants A 1108/B 904 and A 1635/B 1299 from Jordbrukets Forskningsråd.


Sign in / Sign up

Export Citation Format

Share Document