scholarly journals The effect of the branched-chain amino acids on the in-vitro activity of bovine intestinal alkaline phosphatase

2019 ◽  
Vol 44 (6) ◽  
pp. 632-636 ◽  
Author(s):  
Gary William Boyd ◽  
Marion Drew ◽  
Shannon Ward ◽  
Marianne Baird ◽  
Christopher Connaboy ◽  
...  

Branched-chain amino acids (BCAA) are used as nutritional support for patients with a range of conditions including liver cirrhosis and in-born errors of amino acid metabolism, and they are commonly used “sports” or exercise supplements. The effects of the BCAA on the in-vitro activity of calf intestinal alkaline phosphatase (EC. 3.1.3.1) were studied. All three BCAA were found to be uncompetitive inhibitors of the enzyme with L-leucine being the most potent ([Formula: see text] = 24.9 mmol/L) and L-valine, the least potent ([Formula: see text] = 37 mmol/L). Mixed BCAA are able to act in combination to inhibit the enzyme. Given the important role of intestinal alkaline phosphatase in gut homeostasis, these findings have potential implications for those taking high levels of BCAA as supplements.

2016 ◽  
Vol 62 (4) ◽  
pp. 582-592 ◽  
Author(s):  
Miguel Ruiz-Canela ◽  
Estefania Toledo ◽  
Clary B Clish ◽  
Adela Hruby ◽  
Liming Liang ◽  
...  

Abstract BACKGROUND The role of branched-chain amino acids (BCAAs) in cardiovascular disease (CVD) remains poorly understood. We hypothesized that baseline BCAA concentrations predict future risk of CVD and that a Mediterranean diet (MedDiet) intervention may counteract this effect. METHODS We developed a case-cohort study within the Prevención con Dieta Mediterránea (PREDIMED), with 226 incident CVD cases and 744 noncases. We used LC-MS/MS to measure plasma BCAAs (leucine, isoleucine, and valine), both at baseline and after 1 year of follow-up. The primary outcome was a composite of incident stroke, myocardial infarction, or cardiovascular death. RESULTS After adjustment for potential confounders, baseline leucine and isoleucine concentrations were associated with higher CVD risk: the hazard ratios (HRs) for the highest vs lowest quartile were 1.70 (95% CI, 1.05–2.76) and 2.09 (1.27–3.44), respectively. Stronger associations were found for stroke. For both CVD and stroke, we found higher HRs across successive quartiles of BCAAs in the control group than in the MedDiet groups. With stroke as the outcome, a significant interaction (P = 0.009) between baseline BCAA score and intervention with MedDiet was observed. No significant effect of the intervention on 1-year changes in BCAAs or any association between 1-year changes in BCAAs and CVD were observed. CONCLUSIONS Higher concentrations of baseline BCAAs were associated with increased risk of CVD, especially stroke, in a high cardiovascular risk population. A Mediterranean-style diet had a negligible effect on 1-year changes in BCAAs, but it may counteract the harmful effects of BCAAs on stroke.


Author(s):  
Moath Alqaraleh ◽  
Violet Kasabri ◽  
Ibrahim Al-Majali ◽  
Nihad Al-Othman ◽  
Nihad Al-Othman ◽  
...  

Background and aims: Branched chain amino acids (BCAAs) can be tightly connected to metabolism syndrome (MetS) which can be counted as a metabolic indicator in the case of insulin resistance (IR). The aim of this study was to assess the potential role of these acids under oxidative stress. Material and Methods: the in vitro antioxidant activity of BCAAs was assessed using free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging assays. For further check, a qRT-PCR technique was madefor detection the extent of alterations in gene expression of antioxidative enzymes (catalase and glutathione peroxidase (Gpx)) in lipopolysaccharides (LPS(-induced macrophages RAW 264.7 cell line. Additionally, BCAAs antioxidant activity was evaluated based on plasma H2O2 levels and xanthine oxidase (XO) activity in prooxidative LPS-treated mice. Results: Different concentrations of BCAAs affected on DPPH radical scavenging activity but to lesser extent than the ascorbic acid. Besides, BCAAs obviously upregulated the gene expression levels of catalases and Gpx in LPS-modulated macrophage RAW 264.7 cell line. In vivo BCAAs significantly minimized the level of plasma H2O2 as well as the activity of XO activity under oxidative stress. Conclusion: our current findings suggest that BCAAs supplementation may potentially serve as a therapeutic target for treatment of oxidative stress occurs with atherosclerosis, IR-diabetes, MetS and tumorigenesis.


1990 ◽  
Vol 73 (3A) ◽  
pp. NA-NA
Author(s):  
H. Yamada ◽  
Y. Ohta ◽  
I. Chaudhry ◽  
H. Nagashima ◽  
J. Askanazi ◽  
...  

2020 ◽  
Vol 39 (7) ◽  
pp. 2080-2091 ◽  
Author(s):  
Ilaria Buondonno ◽  
Francesca Sassi ◽  
Giulia Carignano ◽  
Francesca Dutto ◽  
Cinzia Ferreri ◽  
...  

2008 ◽  
Vol 190 (18) ◽  
pp. 6134-6147 ◽  
Author(s):  
Shigeo Tojo ◽  
Takenori Satomura ◽  
Kanako Kumamoto ◽  
Kazutake Hirooka ◽  
Yasutaro Fujita

ABSTRACT Branched-chain amino acids are the most abundant amino acids in proteins. The Bacillus subtilis ilv-leu operon is involved in the biosynthesis of branched-chain amino acids. This operon exhibits a RelA-dependent positive stringent response to amino acid starvation. We investigated this positive stringent response upon lysine starvation as well as decoyinine treatment. Deletion analysis involving various lacZ fusions revealed two molecular mechanisms underlying the positive stringent response of ilv-leu, i.e., CodY-dependent and -independent mechanisms. The former is most likely triggered by the decrease in the in vivo concentration of GTP upon lysine starvation, GTP being a corepressor of the CodY protein. So, the GTP decrease derepressed ilv-leu expression through detachment of the CodY protein from its cis elements upstream of the ilv-leu promoter. By means of base substitution and in vitro transcription analyses, the latter (CodY-independent) mechanism was found to comprise the modulation of the transcription initiation frequency, which likely depends on fluctuation of the in vivo RNA polymerase substrate concentrations after stringent treatment, and to involve at least the base species of adenine at the 5′ end of the ilv-leu transcript. As discussed, this mechanism is presumably distinct from that for B. subtilis rrn operons, which involves changes in the in vivo concentration of the initiating GTP.


2020 ◽  
Vol 33 (2) ◽  
pp. 287-297
Author(s):  
Zhihui Wu ◽  
Jinghui Heng ◽  
Min Tian ◽  
Hanqing Song ◽  
Fang Chen ◽  
...  

AbstractThe mammary gland, a unique exocrine organ, is responsible for milk synthesis in mammals. Neonatal growth and health are predominantly determined by quality and quantity of milk production. Amino acids are crucial maternal nutrients that are the building blocks for milk protein and are potential energy sources for neonates. Recent advances made regarding the mammary gland further demonstrate that some functional amino acids also regulate milk protein and fat synthesis through distinct intracellular and extracellular pathways. In the present study, we discuss recent advances in the role of amino acids (especially branched-chain amino acids, methionine, arginine and lysine) in the regulation of milk synthesis. The present review also addresses the crucial questions of how amino acids are transported, sensed and transduced in the mammary gland.


2021 ◽  
pp. 293-305
Author(s):  
M Holeček

The article shows that skeletal muscle plays a dominant role in the catabolism of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) and the pathogenesis of their decreased concentrations in liver cirrhosis, increased concentrations in diabetes, and nonspecific alterations in disorders with signs of systemic inflammatory response syndrome (SIRS), such as burn injury and sepsis. The main role of skeletal muscle in BCAA catabolism is due to its mass and high activity of BCAA aminotransferase, which is absent in the liver. Decreased BCAA levels in liver cirrhosis are due to increased use of the BCAA as a donor of amino group to α-ketoglutarate for synthesis of glutamate, which in muscles acts as a substrate for ammonia detoxification to glutamine. Increased BCAA levels in diabetes are due to alterations in glycolysis, citric acid cycle, and fatty acid oxidation. Decreased glycolysis and citric cycle activity impair BCAA transamination to branched-chain keto acids (BCKAs) due to decreased supply of amino group acceptors (α-ketoglutarate, pyruvate, and oxaloacetate); increased fatty acid oxidation inhibits flux of BCKA through BCKA dehydrogenase due to increased supply of NADH and acyl-CoAs. Alterations in BCAA levels in disorders with SIRS are inconsistent due to contradictory effects of SIRS on muscles. Specifically, increased proteolysis and insulin resistance tend to increase BCAA levels, whereas activation of BCKA dehydrogenase and glutamine synthesis tend to decrease BCAA levels. The studies are needed to elucidate the role of alterations in BCAA metabolism and the effects of BCAA supplementation on the outcomes of specific diseases.


Sign in / Sign up

Export Citation Format

Share Document