scholarly journals A new chemical route for the preparation of fine ferrite powders

1994 ◽  
Vol 17 (6) ◽  
pp. 967-975 ◽  
Author(s):  
P Pramanik ◽  
Amita Pathak
Keyword(s):  
Author(s):  
Pratibha L. Gai ◽  
M. A. Saltzberg ◽  
L.G. Hanna ◽  
S.C. Winchester

Silica based ceramics are some of the most fundamental in crystal chemistry. The cristobalite form of silica has two modifications, α (low temperature, tetragonal form) and β (high temperature, cubic form). This paper describes our structural studies of unusual chemically stabilized cristobalite (CSC) material, a room temperature silica-based ceramic containing small amounts of dopants, prepared by a wet chemical route. It displays many of the structural charatcteristics of the high temperature β-cristobalite (∼270°C), but does not undergo phase inversion to α-cristobalite upon cooling. The Structure of α-cristobalite is well established, but that of β is not yet fully understood.Compositions with varying Ca/Al ratio and substitutions in cristobalite were prepared in the series, CaO:Al2O3:SiO2 : 3-x: x : 40, with x= 0-3. For CSC, a clear sol was prepared from Du Pont colloidal silica, Ludox AS-40®, aluminium nitrate nonahydrate, and calcium nitrate hexahydrate in proportions to form a final composition 1:2:40 composition.


2019 ◽  
Vol 9 (3) ◽  
pp. 362-370 ◽  
Author(s):  
D. Vaya ◽  
Meena ◽  
B.K. Das

Background: The properties of the material are altered when material size shifted towards nano-regime. This feature could be used for wastewater treatment process using model pollutant such as dyes. Recently, nanoparticles are synthesized by a green chemical route using different capping agents. This is the reason we adopt starch as green capping agent along with sol-gel method. Objective: To synthesize cobalt oxide nanoparticles by green chemical route and utilized it in degradation of dyes. Methods: Synthesis of cobalt oxide nanoparticles by sol-gel method using starch as a capping agent. The characteristics of surface modifications were investigated by UV-VIS, TEM, SEM, XRD and FTIR techniques. Results: Cobalt oxide nanoparticles synthesized and inhibited photocatalytic activity. Conclusion: Deactivation of photocatalytic activity due to complex nature of starch. This property can be used elsewhere as in light shielding applications to coat and protect surfaces in order to keep them cool and safe from damage as in the painting of vehicles, roofs, buildings, water tanks, etc.


2021 ◽  
Vol 4 (4) ◽  
pp. 3748-3756
Author(s):  
Christopher J. Perez ◽  
Zhijie Chen ◽  
Willie B. Beeson ◽  
Sevan Chanakian ◽  
Kai Liu ◽  
...  

2021 ◽  
Vol 865 ◽  
pp. 158937
Author(s):  
S.K. Satpathy ◽  
U.K. Panigrahi ◽  
S.K. Panda ◽  
R. Biswal ◽  
W. Luyten ◽  
...  

2021 ◽  
Vol 602 ◽  
pp. 412574
Author(s):  
Tahira Akhter ◽  
Muhammad Asif Yousuf ◽  
Muhammad Asghar ◽  
Ibrahim A. Alsafari ◽  
Akmal Jamil ◽  
...  

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
A. Krishnamoorthy ◽  
P. Sakthivel ◽  
I. Devadoss ◽  
V. M. Anitha Rajathi

AbstractIn this work, the Cd0.9-xZn0.1BixS QDs with different compositions of Bi3+ ions (0 ≤ x ≤ 0.05) were synthesized using a facile chemical route. The prepared QDs were characterized for analyzing the structural, morphological, elemental, optical, band gap, photoluminescence and electrochemical properties. XRD results confirmed that the Cd0.9-xZn0.1BixS QDs have a cubic structure. The mean crystallite size was increased from ~ 2 to ~ 5 nm for the increase of Bi3+ ions concentration. The optical transmittance behavior was decreased with increasing Bi3+ ions. The scanning electron microscope images showed that the prepared QDs possessed agglomerated morphology and the EDAX confirmed the presence of doped elements as per stoichiometry ratio. The optical band gap was slightly blue-shifted for initial substitution (Bi3+  = 1%) of Bi3+ ions and red-shifted for further increase of Bi3+ compositions. The optical band gap was ranged between 3.76 and 4.0 eV. High intense red emission was received for Bi3+ (1%) doped Zn:CdS QDs. The red emission peaks were shifted to a higher wavelength side due to the addition of Bi3+ ions. The PL emission on UV-region was raised for Bi3+ (1%) and it was diminished. Further, a violet (422 nm) and blue (460 nm) emission were received for Bi3+ ions doping. The cyclic voltammetry analysis showed that Bi3+ (0%) possessed better electrical properties than other compositions of Bi3+ ions.


2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


2020 ◽  
Vol 17 (5) ◽  
pp. 2123-2136
Author(s):  
Raziyeh Ghelich ◽  
Hossein Abdizadeh ◽  
Mohammad Reza Jahannama ◽  
Fatemeh Sadat Torknik ◽  
Mohammad Reza Vaezi

Sign in / Sign up

Export Citation Format

Share Document