Part I. The 2D classical Coulomb gas near the zero-density Kosterlitz-Thouless critical point: Correlations and critical line

1997 ◽  
Vol 89 (1-2) ◽  
pp. 6-19
Author(s):  
A. Alastuey ◽  
F. Cornu
1993 ◽  
Vol 48 (16) ◽  
pp. 12304-12307 ◽  
Author(s):  
Guang-Ming Zhang ◽  
Hong Chen ◽  
Xiang Wu

Author(s):  
Eldred H. Chimowitz

The critical point of mixtures requires a more intricate set of conditions to hold than those at a pure-fluid critical point. In contrast to the pure-fluid case, in which the critical point occurs at a unique point, mixtures have additional thermodynamic degrees of freedom. They, therefore, possess a critical line which defines a locus of critical points for the mixture. At each point along this locus, the mixture exhibits a critical point with its own composition, temperature, and pressure. In this chapter we investigate the critical behavior of binary mixtures, since higher-order systems do not bring significant new considerations beyond those found in binaries. We deal first with mixtures at finite compositions along the critical locus, followed by consideration of the technologically important case involving dilute mixtures near the solvent’s critical point. Before taking up this discussion, however, we briefly describe some of the main topographic features of the critical line of systems of significant interest: those for which nonvolatile solutes are dissolved in a solvent near its critical point. The critical line divides the P–T plane into two distinctive regions. The area above the line is a one-phase region, while below this line, phase transitions can occur. For example, a mixture of overall composition xc will have a loop associated with it, like the one shown in figure 4.1, which just touches the critical line of the mixture at a unique point. The leg of the curve to the “left” of the critical point is referred to as the bubble line; while that to the right is termed the dew line. Phase equilibrium occurs between two phases at the point where the bubble line at one composition intersects the dew line; this requires two loops to be drawn of the sort shown in figure 4.1. A question naturally arises as to whether or not all binary systems exhibit continuous critical lines like that shown. In particular we are interested in the situation involving a nonvolatile solute dissolved in a supercritical fluid of high volatility.


1980 ◽  
Vol 63 (2) ◽  
pp. 402-414 ◽  
Author(s):  
I. Nakayama ◽  
T. Tsuneto

Author(s):  
Robert Paul Salazar Romero ◽  
Camilo Bayona Roa ◽  
Gabriel Tellez

Abstract In this work, we study the gapped Surface Electrode (SE), a planar system composed of two-conductor flat regions at different potentials with a gap G between both sheets. The computation of the electric field and the surface charge density requires solving Laplace’s equation subjected to Dirichlet conditions (on the electrodes) and Neumann Boundary Conditions over the gap. In this document, the GSE is modeled as a Two-Dimensional Classical Coulomb Gas having punctual charges +q and −q on the inner and outer electrodes, respectively, interacting with an inverse power law 1~r-potential. The coupling parameter Γ between particles inversely depends on temperature and is proportional to q2. Precisely, the density charge arises from the equilibrium states via Monte Carlo (MC) simulations. We focus on the coupling and the gap geometry effect. Mainly on the distribution of particles in the circular and the harmonically-deformed gapped SE. MC simulations differ from electrostatics in the strong coupling regime. The electrostatic approximation and the MC simulations agree in the weak coupling regime where the system behaves as two interacting ionic fluids. That means that temperature is crucial in finite-size versions of the gapped SE where the density charge cannot be assumed fully continuous as the coupling among particles increases. Numerical comparisons are addressed against analytical descriptions based on an electric vector potential approach, finding good agreement.


1983 ◽  
Vol 22 ◽  
Author(s):  
J.A. Schouten ◽  
L.C. Van Den Bergh ◽  
N.J. Trappeniers

The critical line of a nearly ideal binary system generally moves from the critical point of one of the components directly to the critical point of the other component (curve 1 Fig. 1). In a less ideal system, however, the behaviour is quite different. In some cases the curves move from the critical point of the less volatile component (component 2) to lower temperatures and higher pressures (curve 2) and rise again to higher temperatures via a temperature minimum, the critical double point. In other systems, the critical temperature increases continuously from the critical point of the less volatile component when the pressure is increased (curve 3). We assume here that the critical line is not interrupted by the appearance of a solid phase.


2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
L. S. Campana ◽  
A. Cavallo ◽  
L. De Cesare ◽  
U. Esposito ◽  
A. Naddeo

We explore the low-temperature thermodynamic properties and crossovers of ad-dimensional classical planar Heisenberg ferromagnet in a longitudinal magnetic field close to its field-induced zero-temperature critical point by employing the two-time Green’s function formalism in classical statistical mechanics. By means of a classical Callen-like method for the magnetization and the Tyablikov-like decoupling procedure, we obtain, for anyd, a low-temperature critical scenario which is quite similar to the one found for the quantum counterpart. Remarkably, ford>2the discrimination between the two cases is found to be related to the different values of the shift exponent which governs the behavior of the critical line in the vicinity of the zero-temperature critical point. The observation of different values of the shift-exponent and of the related critical exponents along thermodynamic paths within the typical V-shaped region in the phase diagram may be interpreted as a signature of emerging quantum critical fluctuations.


Sign in / Sign up

Export Citation Format

Share Document