Global solvability of the initial boundary-value problem with periodic boundary conditions describing the 2D maxwell flow

2000 ◽  
Vol 99 (1) ◽  
pp. 870-873
Author(s):  
N. A. Karazeeva
Author(s):  
H. N. Narang ◽  
Rajiv K. Nekkanti

The Wavelet solution for boundary-value problems is relatively new and has been mainly restricted to the solutions in data compression, image processing and recently to the solution of differential equations with periodic boundary conditions. This paper is concerned with the wavelet-based Galerkin’s solution to time dependent higher order non-linear two-point initial-boundary-value problems with non-periodic boundary conditions. The wavelet method can offer several advantages in solving the initial-boundary-value problems than the traditional methods such as Fourier series, Finite Differences and Finite Elements by reducing the computational time near singularities because of its multi-resolution character. In order to demonstrate the wavelet, we extend our prior research of solution to parabolic equations and problems with non-linear boundary conditions to non-linear problems involving KdV Equation and Boussinesq Equation. The results of the wavelet solutions are examined and they are found to compare favorably to the known solution. This paper on the whole indicates that the wavelet technique is a strong contender for solving partial differential equations with non-periodic conditions.


Author(s):  
Alexander N. Polkovnikov

We consider initial boundary value problem for uniformly 2-parabolic differential operator of second order in cylinder domain in Rn with non-coercive boundary conditions. In this case there is a loss of smoothness of the solution in Sobolev type spaces compared with the coercive situation. Using by Faedo-Galerkin method we prove that problem has unique solution in special Bochner space


Author(s):  
Sharif E. Guseynov ◽  
Ruslans Aleksejevs ◽  
Jekaterina V. Aleksejeva

In the present paper, we propose an analytical approach for solving the 3D unsteady-state boundary-value problem for the second-order parabolic equation with the second and third types boundary conditions in two-layer rectangular parallelepipedic domain.


2018 ◽  
Vol 15 (02) ◽  
pp. 349-374 ◽  
Author(s):  
Elena Rossi

We consider four definitions of solution to the initial-boundary value problem (IBVP) for a scalar balance laws in several space dimensions. These definitions are extended to the same most general framework and then compared. The first aim of this paper is to detail differences and analogies among them. We focus then on the ways the boundary conditions are fulfilled according to each definition, providing also connections among these various modes. The main result is the proof of the equivalence among the presented definitions of solution.


2013 ◽  
Vol 28 (22n23) ◽  
pp. 1340015 ◽  
Author(s):  
DAVID HILDITCH

These lecture notes accompany two classes given at the NRHEP2 school. In the first lecture I introduce the basic concepts used for analyzing well-posedness, that is the existence of a unique solution depending continuously on given data, of evolution partial differential equations. I show how strong hyperbolicity guarantees well-posedness of the initial value problem. Symmetric hyperbolic systems are shown to render the initial boundary value problem well-posed with maximally dissipative boundary conditions. I discuss the Laplace–Fourier method for analyzing the initial boundary value problem. Finally, I state how these notions extend to systems that are first-order in time and second-order in space. In the second lecture I discuss the effect that the gauge freedom of electromagnetism has on the PDE status of the initial value problem. I focus on gauge choices, strong-hyperbolicity and the construction of constraint preserving boundary conditions. I show that strongly hyperbolic pure gauges can be used to build strongly hyperbolic formulations. I examine which of these formulations is additionally symmetric hyperbolic and finally demonstrate that the system can be made boundary stable.


Author(s):  
John E. Lavery

AbstractA method for solving quasilinear parabolic equations of the typesthat differs radically from previously known methods is proposed. For each initial-boundary-value problem of one of these types that has boundary conditions of the first kind (second kind), a conjugate initial-boundary-value problem of the other type that has boundary conditions of the second kind (first kind) is defined. Based on the relations connecting the solutions of a pair of conjugate problems, a series of parabolic equations with constant coefficients that do not change step to step is constructed. The method proposed consists in calculating the solutions of the equations of this series. It is shown to have linear convergence. Results of a series of numerical experiments in a finite-difference setting show that one particular implementation of the proposed method has a smaller domain of convergence than Newton's method but that it sometimes converges faster within that domain.


Sign in / Sign up

Export Citation Format

Share Document