The wave equation for a hypoelliptic operator with symplectic characteristics of codimension two

1984 ◽  
Vol 44 (1) ◽  
pp. 134-182 ◽  
Author(s):  
Richard B. Melrose
Author(s):  
Jean-Michel Bismut

This chapter establishes rough estimates on the heat kernel rb,tX for the scalar hypoelliptic operator AbX on X defined in the preceding chapter. By rough estimates, this chapter refers to just the uniform bounds on the heat kernel. The chapter also obtains corresponding bounds for the heat kernels associated with operators AbX and another AbX over ̂X. Moreover, it gives a probabilistic construction of the heat kernels. This chapter also explains the relation of the heat equation for the hypoelliptic Laplacian on X to the wave equation on X and proves that as b → 0, the heat kernel rb,tX converges to the standard heat kernel of X.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


2020 ◽  
Author(s):  
Vitaly Kuyukov
Keyword(s):  

DeWitt geometry and the wave equation in hyper-volume


2019 ◽  
Vol 484 (1) ◽  
pp. 18-20
Author(s):  
A. P. Khromov ◽  
V. V. Kornev

This study follows A.N. Krylov’s recommendations on accelerating the convergence of the Fourier series, to obtain explicit expressions of the classical mixed problem–solution for a non-homogeneous equation and explicit expressions of the generalized solution in the case of arbitrary summable functions q(x), ϕ(x), y(x), f(x, t).


Sign in / Sign up

Export Citation Format

Share Document