The wave equation in spherical coordinates

1954 ◽  
Vol 6 ◽  
pp. 410-415 ◽  
Author(s):  
R. P. Agarwal

Recently a number of papers have been written on Bessel polynomials which arise as the solutions of the classical wave equation in spherical coordinates. Krall and Frink (5) studied in some detail the properties of these polynomials yn(x, a, b) defined as(1) .


Acoustics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 309-315
Author(s):  
Oskar Bschorr ◽  
Hans-Joachim Raida

The coordinate-free one-way wave equation is transferred in spherical coordinates. Therefore it is necessary to achieve consistency between gradient, divergence and Laplace operators and to establish, beside the conventional radial Nabla operator ∂Φ/∂r, a new variant ∂rΦ/r∂r. The two Nabla operator variants differ in the near field term Φ/r whereas in the far field r≫0 there is asymptotic approximation. Surprisingly, the more complicated gradient ∂rΦ/r∂r results in unexpected simplifications for – and only for – spherical waves with the 1/r amplitude decrease. Thus the calculation always remains elementary without the wattless imaginary near fields, and the spherical Bessel functions are obsolete.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


2020 ◽  
Author(s):  
Zhaoxi Sun

Host-guest binding remains a major challenge in modern computational modelling. The newest 7<sup>th</sup> statistical assessment of the modeling of proteins and ligands (SAMPL) challenge contains a new series of host-guest systems. The TrimerTrip host binds to 16 structurally diverse guests. Previously, we have successfully employed the spherical coordinates as the collective variables coupled with the enhanced sampling technique metadynamics to enhance the sampling of the binding/unbinding event, search for possible binding poses and predict the binding affinities in all three host-guest binding cases of the 6<sup>th</sup> SAMPL challenge. In this work, we employed the same protocol to investigate the TrimerTrip host in the SAMPL7 challenge. As no binding pose is provided by the SAMPL7 host, our simulations initiate from randomly selected configurations and are proceeded long enough to obtain converged free energy estimates and search for possible binding poses. The predicted binding affinities are in good agreement with the experimental reference, and the obtained binding poses serve as a nice starting point for end-point or alchemical free energy calculations.


Sign in / Sign up

Export Citation Format

Share Document