Numerical modeling of the complex stress-strain state of designs and Structures for Power-Generating Projects

1999 ◽  
Vol 33 (8-9) ◽  
pp. 545-552
Author(s):  
A. M. Belostotskii
2015 ◽  
Vol 799-800 ◽  
pp. 865-869 ◽  
Author(s):  
Vladimir Yakovlevich Modorskiy ◽  
Arthur Fadanisovich Shmakov

In this work results of numerical modeling of the gasdynamic processes and processes of deformation proceeding in the compressor of the model test bench of the gas-distributing unit are provided. Fields of pressure and temperatures, and also component of the stress-strain state structure taking into account the imported gasdynamic and heat loads are received. A good agreement with data of physical experiments is received.


2015 ◽  
Vol 725-726 ◽  
pp. 955-960 ◽  
Author(s):  
Igor Ignatovich ◽  
Artem S. Semenov ◽  
Sergey Semenov ◽  
Leonid Getsov

During operation of transport and maneuverable gas-turbine units, there are crack formation in turbine disc rims what exerted by thermomechanical cycling loads. For in-depth study of these problems we have to use theories of plasticity and creep which form the basis for determining the complex stress-strain state in the stress concentration zone for disc rims, and a modern failure criterion which can predict lifetime under conditions of simultaneous plastic and creep strain accumulation. There is a finite-element method (FEM) that allows us to evaluate the stress-strain state in a stress concentration zone for a non-elastic material behavior. With plasticity and creep theories, it is possible to determine local strain quiet reliable by FEM.


2020 ◽  
pp. 28-36
Author(s):  
Volodymyr Sedin ◽  
Vladyslav Kovba ◽  
Yurii Volnianskyi ◽  
Kateryna Bikus

A full-scale experiment was conducted to study the operation of a multi-helix screw pile under static pressing and pulling load in dusty clay soil. Based on the full-scale test of a multi-helix screw pile under static loading in dusty clay soil, numerical modeling of the stress-strain state of the base of the multi-helix screw pile was performed. Multi-helix screw piles are actively used all over the world, and have also become widespread in Ukraine. Foundations made of multi-helix screw piles are often used for industrial construction as well as the foundations of low-rise buildings and structures. Despite the growing demand for the use of multi-helix screw piles in modern construction, there is no official document calculating the features of their design and bearing capacity of a multi-helix screw pile. This poses a number of new tasks for engineers and geotechnical: a) development of new modern calculation methods; b) development and use of modern normative documents and recommendations for the calculation of foundations from multi-helix screw piles in various soil conditions; с) use of computer-aided design systems for calculation of complex geotechnical tasks; d) development of calculation models that will take into account nonlinear models of deformation of materials and soil base. Foundations made of multi-helix screw piles are a promising direction in the field of foundation construction due to the reduction of the duration of the foundation and its economic. This requires the development of regulations with recommendations for the calculation and use of multi-helix screw piles in the field of foundation construction, development of modern calculation models for the calculation of bearing capacity and settling of multi-helix screw piles in different geological conditions. Based on the results of the field study of the work of multi-helix screw piles in clay soils, numerical modeling of the stress-strain state of the base of the multi-turn pile was performed, and their results were compared.


Sign in / Sign up

Export Citation Format

Share Document