Thermal-Fatigue Analysis of Turbine Discs under Complex Thermo-Mechanical Loading with Account of Plasticity and Creep Effects

2015 ◽  
Vol 725-726 ◽  
pp. 955-960 ◽  
Author(s):  
Igor Ignatovich ◽  
Artem S. Semenov ◽  
Sergey Semenov ◽  
Leonid Getsov

During operation of transport and maneuverable gas-turbine units, there are crack formation in turbine disc rims what exerted by thermomechanical cycling loads. For in-depth study of these problems we have to use theories of plasticity and creep which form the basis for determining the complex stress-strain state in the stress concentration zone for disc rims, and a modern failure criterion which can predict lifetime under conditions of simultaneous plastic and creep strain accumulation. There is a finite-element method (FEM) that allows us to evaluate the stress-strain state in a stress concentration zone for a non-elastic material behavior. With plasticity and creep theories, it is possible to determine local strain quiet reliable by FEM.

Author(s):  
E.E. Deryugin ◽  

The article considers a crack in the form of a narrow cut with a certain cfn at the cut out in an unbounded plate. The characteristics of the mechanical state of this system under uniaxial loading are determined: the stress concentration coefficient, the crack-driving force, and the energy of a solid with a crack. The elastic energy expenditure during crack propagation is determined. The general regularities of the mechanical state of a solid with a crack, not necessary having the form of an ellipse, are revealed. An important parameter of a crack is the curvature at the tip. It is shown that the Griffiths crack does not actually have a singularity at the tip. The stress strain state of the plate with an elliptical crack is identical to the same of the plate with a focus of homogeneous plastic deformation.


Author(s):  
Dmitry A. Kuzmin ◽  
Anastasia V. Andreenkova

Relevance. The nuclear power plant contains a large number of equipment and pipelines subject to flow acceleration corrosion. As a result of a combination of various parameters - sizes (diameters, wall thickness), operational parameters (internal pressure, temperature), steels and elements types - the number of design cases is tens of thousands, without counting the possible forms of thinning. The process of maintenance and repair at the stations are doing an assessment of the accordance of actual and allowable values of wall thicknesses. The ensuring safe operations of equipment and pipelines have been introduced correction functions for regulatory functions, taking into account the forms of thinning, to determine the permissible thinning. The aim of the work. The task is to determine the influence of the forms and types of thinning on the stress-strain state and to determine the most critical thinning for straight sections of pipelines subject to flow acceleration corrosion taking into account emergency conditions. Methods. The allowable values of stress concentration factors (deformations) of pipelines subject without flow acceleration corrosion was determined taking into account allowable values, the requirements of the federal norms and rules for emergency operating conditions. For researches of the stress concentration coefficients were used the finite element method and analytical methods for various shapes, sizes and depths of thinning. Results. A method has been developed, that allows getting the maximum allowable values of stress concentration factors (deformations) for emergency operation, which afford to determine the maximum allowable depth of thinning in emergency conditions - an above criterion. The researches have been carried out definition of the stress concentration factors for local thinning with various types of these thinning. The functions of concentration coefficients depending on the geometric parameters of local thinning wall thickness were determined for a straight section of the pipeline. As a result of the research, the dependences of the sizes of thinning on the concentration coefficients for straight pipelines were created and a master-curve was obtained. The researches were carried out take into account the load from internal pressure and bending moment.


2021 ◽  
Vol 266 ◽  
pp. 01022
Author(s):  
Z.A. Besheryan ◽  
I.F. Kantemirov

The development of Russian fuel and energy complex in the short term is connected with the development of new hydrocarbon field in the permafrost zone and the need to build Arctic pipelines north of the 60th parallel. The ground-based structural scheme of pipeline laying is the most optimal while constructing trunk pipelines in permafrost areas in the Arctic and subarctic latitudes. The actual operating conditions of these systems are insufficiently studied. The above-ground pipeline in permafrost is in an complex stress-strain state. This study presents the results of the assessment of the stress-strain state of linearly extended above-ground pipelines at different compensation sections (triangular compensator; trapezoidal compensator; U-shaped compensator) under actual operating conditions. Using the finite element method on mathematical models, the dependences of the transverse displacements of the pipeline on movable supports and stresses arising in dangerous sections of the typical pipeline section during self-compensation of deformations on the variable design parameters of the system for various load combinations were established (the simulation was carried out in the ANSYS software package).


Author(s):  
Dmytro Breslavsky

Approaches for describing the deformation of structural elements made from the material, in which radiation creep and swelling strains develop simultaneously, are discussed. The technique for description of irradiation swelling strains, which is used for calculational analysis of stress-strain state arising in structural elements under the joint action of irradiation and thermal-stress fields, is regarded. A complete system of equations of the boundary –initial value problem is presented, in which elastic and thermal strains, strains of radiation creep and swelling are taken into account. Numerical modelling was carried out using the specialized software FEM Creep, in which the boundary value problem is solved by the Finite Element Method, and the initial one is integrated in time by the difference predictor-corrector method. Two forms are given for the equation of state describing the radiation swelling strains: first is for the components of the strain tensor as well as second is prepared for their rates. The hypothesis about the linear correspondence of the received radiation dose and the deformation time, during which radiation swelling strains develop, are analyzed. A number of questions that require answers when using equations with a complex stress state in which the radiation swelling strains are directly depend on stresses, are discussed. Based on the processing of experimental data on the swelling of tubes made of steel 316Ti in the temperature range of 450-460 °С, a form of the equation for the radiation swelling strain rate is proposed, and the constants included in it are determined. Using the example of numerical modelling of the deformation of tubes were made of steel 316Ti and loaded by inner pressure, the applicability of the classical approach for the analysis of the stress-strain state in the presence of radiation swelling strains is shown.


Sign in / Sign up

Export Citation Format

Share Document