Plastic deformation of delta-ferritic iron at intermediate strain rates

1976 ◽  
Vol 7 (11) ◽  
pp. 1621-1627 ◽  
Author(s):  
Peter J. Wray
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiurong Fang ◽  
Jiang Wu ◽  
Xue Ou ◽  
Fuqiang Yang

Dynamic plastic deformation (DPD) achieved by multipass hammer forging is one of the most important metal forming operations to create the excellent materials properties. By using the integrated approaches of optical microscope and scanning electron microscope, the forging temperature effects on the multipass hammer forging process and the forged properties of Ti-6Al-4V alloy were evaluated and the forging samples were controlled with a total height reduction of 50% by multipass strikes from 925°C to 1025°C. The results indicate that the forging temperature has a significant effect on morphology and the volume fraction of primary α phase, and the microstructural homogeneity is enhanced after multipass hammer forging. The alloy slip possibility and strain rates could be improved by multipass strikes, but the marginal efficiency decreases with the increased forging temperature. Besides, a forging process with an initial forging temperature a bit above β transformation and finishing the forging a little below the β transformation is suggested to balance the forging deformation resistance and forged mechanical properties.


2014 ◽  
Vol 11 (6) ◽  
pp. 529-542 ◽  
Author(s):  
Sachin Gautam ◽  
Ravindra Saxena

In an impact phenomenon the material is subjected to very short duration high force levels resulting large plastic deformations and rise in temperature at high strain rates. A circular rod impacting against a rigid surface called as Taylor rod impact test is widely used for determining the mechanical behaviour of materials subjected to high strain rates with associated increase in temperature. A three-dimensional large deformation, thermo-elasto-plastic, dynamic, contact, finite element formulation is developed to study the effect of temperature rise due to plastic deformation and surface friction on the deformation and stress fields. It is found that the predicted equivalent plastic strain values are influenced by temperature generated due to plastic deformation and surface friction. The values of the coefficient of friction have a profound effect on the location of fracture initiation on the impacting face in a circular rod.


2018 ◽  
Vol 385 ◽  
pp. 39-44 ◽  
Author(s):  
Fernando Carreño ◽  
Oscar A. Ruano

The 7075 (Al-Zn-Mg-Cu) aluminium alloy is the reference alloy for aerospace applications due to its specific mechanical properties at room temperature, showing excellent tensile strength and sufficient ductility. Formability at high temperature can be improved by obtaining superplasticity as a result of fine, equiaxed and highly misoriented grains prone to deform by grain boundary sliding (GBS). Different severe plastic deformation (SPD) processing routes such as ECAP, ARB, HPT and FSP have been considered and their effect on mechanical properties, especially at intermediate to high temperatures, are studied. Refined grains as fine as 100 nm and average misorientations as high as 39o allow attainment of high strain rate superplasticity (HSRSP) at lower than usual temperatures (250-300oC). It is shown that increasing misorientations are obtained with increasing applied strain, and increasing grain refinement is obtained with increasing processing stress. Thus, increasing superplastic strains at higher strain rates, lower stresses and lower temperatures are obtained with increasing processing strain and, specially, processing stress.


2012 ◽  
Vol 735 ◽  
pp. 353-358 ◽  
Author(s):  
Anna Mogucheva ◽  
Diana Tagirova ◽  
Rustam Kaibyshev

The superplastic behaviour of an Al-4.6%Mg-0.35%Mn-0.2%Sc-0.09%Zr alloy was studied in the temperature range 250-500°C at strain rates ranging from 10-4 to 10-1 s-1. The AA5024 was subjected to equal channel angular pressing (ECAP) at 300°C up to ~12. The highest elongation-to-failure of ∼3300% was attained at a temperature of 450°C and an initial strain rate of 5.6×10-1 s-1. Regularities of superplastic behaviour of the 5024 aluminium alloy are discussed.


Sign in / Sign up

Export Citation Format

Share Document