dp980 steel
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 8)

H-INDEX

13
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4970
Author(s):  
Jacqueline Noder ◽  
Jon Edward Gutierrez ◽  
Amir Zhumagulov ◽  
James Dykeman ◽  
Hesham Ezzat ◽  
...  

While the third generation of advanced high-strength steels (3rd Gen AHSS) have increasingly gained attention for automotive lightweighting, it remains unclear to what extent the developed methodologies for the conventional dual-phase (DP) steels are applicable to this new class of steels. The present paper provides a comprehensive study on the constitutive, formability, tribology, and fracture behavior of three commercial 3rd Gen AHSS with an ultimate strength level ranging from 980 to 1180 MPa which are contrasted with two DP steels of the same strength levels and the 590R AHSS. The hardening response to large strain levels was determined experimentally using tensile and shear tests and then evaluated in 3D simulations of tensile tests. In general, the strain rate sensitivity of the two 3rd Gen 1180 AHSS was significantly different as one grade exhibited larger transformation-induced behavior. The in-plane formability of the three 1180 MPa steels was similar but with a stark contrast in the local formability whereas the opposite trend was observed for the 3rd Gen 980 and the DP980 steel. The forming limit curves could be accurately predicted using the experimentally measured hardening behavior and the deterministic modified Bressan–Williams through-thickness shear model or the linearized Modified Maximum Force Criterion. The resistance to sliding of the three 3rd Gen AHSS in the Twist Compression Test revealed a comparable coefficient of friction to the 590R except for the electro-galvanized 3rd Gen 1180 V1. An efficient experimental approach to fracture characterization for AHSS was developed that exploits tool contact and bending to obtain fracture strains on the surface of the specimen by suppressing necking. Miniature conical hole expansion, biaxial punch tests, and the VDA 238-100 bend test were performed to construct stress-state dependent fracture loci for use in forming and crash simulations. It is demonstrated that, the 3rd Gen 1180 V2 can potentially replace the DP980 steel in terms of both the global and local formability.


2021 ◽  
Vol 245 ◽  
pp. 01003
Author(s):  
Libo Pan ◽  
Wen Tan ◽  
Wenqiang Zhou ◽  
Junlin Wang

DP980 is a promising light-weightening material in car body. To avoid high investment of strong cooling system, a new DP980 steel with low cooling rate requirement was developed. The mechanical properties and microstructure were analyzed under different manufacturing process. It could be concluded that the chemical composition design should be reasonable and of low cost to achieve both high strength and also austenite to martensite transformation at low cooling rate. Strength increased with coiling temperature decreasing during hot rolling, and higher annealing temperature and lower over aging temperature were favourable to higher strength. The austenite-martensite transforming could be completed at even lower rapid cooling rate of 20°C/s. Through optimized manufacturing process parameters, the new DP steel product with good mechanical properties could be obtained successfully, which provided a new option for normal production line to produce ultra high strength steel.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 382 ◽  
Author(s):  
Haijun Li ◽  
Tianxiang Li ◽  
Chaofei Li ◽  
Zhaodong Wang ◽  
Guodong Wang

Cold-rolled DP980 steel is widely used in the automobile industry. Hot-rolled coil is the raw material of cold-rolled DP980 steel, the head and tail parts of which are usually obviously stronger than the body part. The objective of this study is to improve the longitudinal performance uniformity of hot-rolled coils. The material properties of this steel, such as the dynamic continuous cooling transformation, the influence of the cooling mode before coiling, the cooling rate during coil cooling on the microstructure, and mechanical properties of cold-rolled DP980 steel were investigated through thermal simulation experiments and hot rolling experiments. Meanwhile, the temperature field of hot-rolled coil was analyzed using ABAQUS software, which was used to survey the cause of the longitudinal performance fluctuations of hot-rolled coils, combined with an investigation of the aforementioned material properties. The results illustrate that the average cooling rate of the head and tail parts are higher than that of the body part during coil cooling, which causes the longitudinal performance fluctuation of hot-rolled coils. Based on the temperature field of hot-rolled coil, obtained by FEM, the parameters of the U-shaped cooling process were optimized and used in industrial applications.


2019 ◽  
Vol 121 ◽  
pp. 163-171 ◽  
Author(s):  
J.H. Ordoñez ◽  
R.R. Ambriz ◽  
C. García ◽  
G. Plascencia ◽  
D. Jaramillo

Sign in / Sign up

Export Citation Format

Share Document