The rate of cell division in the shoot apical meristem during photoperiodic induction and transition to flowering

1980 ◽  
Vol 22 (6) ◽  
pp. 428-433 ◽  
Author(s):  
Frideta Seidlová
Development ◽  
2002 ◽  
Vol 129 (13) ◽  
pp. 3207-3217 ◽  
Author(s):  
Jean-Luc Gallois ◽  
Claire Woodward ◽  
G. Venugopala Reddy ◽  
Robert Sablowski

Almost all aerial parts of plants are continuously generated at the shoot apical meristem (SAM). To maintain a steady pool of undifferentiated cells in the SAM while continuously generating new organs, it is necessary to balance the rate of cell division with the rate of entrance into differentiation pathways. In the Arabidopsis meristem, SHOOT MERISTEMLESS (STM) and WUSCHEL (WUS) are necessary to keep cells undifferentiated and dividing. Here, we tested whether ectopic STM and WUS functions are sufficient to revert differentiation and activate cell division in differentiating tissues. Ectopic STM and WUS functions interacted non-additively and activated a subset of meristem functions, including cell division, CLAVATA1 expression and organogenesis, but not correct phyllotaxy or meristem self-maintenance. Our results suggest that WUS produces a non-cell autonomous signal that activates cell division in combination with STM and that combined WUS/STM functions can initiate the progression from stem cells to organ initiation.


2003 ◽  
Vol 16 (1) ◽  
pp. 74-87 ◽  
Author(s):  
Olivier Grandjean ◽  
Teva Vernoux ◽  
Patrick Laufs ◽  
Katia Belcram ◽  
Yuki Mizukami ◽  
...  

2015 ◽  
Vol 112 (15) ◽  
pp. 4815-4820 ◽  
Author(s):  
Bruce E. Shapiro ◽  
Cory Tobin ◽  
Eric Mjolsness ◽  
Elliot M. Meyerowitz

The stereotypic pattern of cell shapes in the Arabidopsis shoot apical meristem (SAM) suggests that strict rules govern the placement of new walls during cell division. When a cell in the SAM divides, a new wall is built that connects existing walls and divides the cytoplasm of the daughter cells. Because features that are determined by the placement of new walls such as cell size, shape, and number of neighbors are highly regular, rules must exist for maintaining such order. Here we present a quantitative model of these rules that incorporates different observed features of cell division. Each feature is incorporated into a “potential function” that contributes a single term to a total analog of potential energy. New cell walls are predicted to occur at locations where the potential function is minimized. Quantitative terms that represent the well-known historical rules of plant cell division, such as those given by Hofmeister, Errera, and Sachs are developed and evaluated against observed cell divisions in the epidermal layer (L1) of Arabidopsis thaliana SAM. The method is general enough to allow additional terms for nongeometric properties such as internal concentration gradients and mechanical tensile forces.


Sign in / Sign up

Export Citation Format

Share Document