Ultrastructural localization of amyloid β/A4 protein precursor in the normal rat brain

1993 ◽  
Vol 63 (1) ◽  
pp. 173-180 ◽  
Author(s):  
Tsuneo Yamazaki ◽  
Haruyasu Yamaguchi ◽  
Takeshi Kawarabayashi ◽  
Shunsaku Hirai
1993 ◽  
Vol 153 (1) ◽  
pp. 73-76 ◽  
Author(s):  
Takeshi Kawarabayashi ◽  
Mikio Shoji ◽  
Haruyasu Yamaguchi ◽  
Makoto Tanaka ◽  
Yasuo Harigaya ◽  
...  

1994 ◽  
Vol 643 (1-2) ◽  
pp. 319-323 ◽  
Author(s):  
Yu Nakamura ◽  
Masatoshi Takeda ◽  
Hisayoshi Niigawa ◽  
Fuyuki Kametani ◽  
Shiro Hariguchi ◽  
...  

2000 ◽  
Vol 20 (13) ◽  
pp. 4798-4808 ◽  
Author(s):  
Elizabeth A. Bolan ◽  
K. Noelle Gracy ◽  
June Chan ◽  
Rosario R. Trifiletti ◽  
Virginia M. Pickel

2004 ◽  
Vol 79 (6) ◽  
pp. 494 ◽  
Author(s):  
Feng Jiang ◽  
Zheng Gang Zhang ◽  
Mark Katakowski ◽  
Adam M Robin ◽  
Michelle Faber ◽  
...  

2002 ◽  
Vol 22 (12) ◽  
pp. 1476-1489 ◽  
Author(s):  
Nancy F. Cruz ◽  
Gerald A. Dienel

The concentration of glycogen, the major brain energy reserve localized mainly in astrocytes, is generally reported as about 2 or 3 μmol/g, but sometimes as high as 3.9 to 8 μmol/g, in normal rat brain. The authors found high but very different glycogen levels in two recent studies in which glycogen was determined by the routine amyloglucosidase procedure in 0.03N HCl digests either of frozen powders (4.8 to 6 μmol/g) or of ethanol-insoluble fractions (8 to 12 μmol/g). To evaluate the basis for these discrepant results, glycogen was assayed in parallel extracts of the same samples. Glycogen levels in ethanol extracts were twice those in 0.03N HCl digests, suggesting incomplete enzyme inactivation even with very careful thawing. The very high glycogen levels were biologically active and responsive to physiologic and pharmacological challenge. Glycogen levels fell after brief sensory stimulation, and metabolic labeling indicated its turnover under resting conditions. About 95% of the glycogen was degraded under in vitro ischemic conditions, and its “carbon equivalents” recovered mainly as glc, glc-P, and lactate. Resting glycogen stores were reduced by about 50% by chronic inhibition of nitric oxide synthase. Because neurotransmitters are known to stimulate glycogenolysis, stress or sensory activation due to animal handling and tissue-sampling procedures may stimulate glycogenolysis during an experiment, and glycogen lability during tissue sampling and extraction can further reduce glycogen levels. The very high glycogen levels in normal rat brain suggest an unrecognized role for astrocytic energy metabolism during brain activation.


2021 ◽  
Vol 5 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Marvin Ruiter ◽  
Christine Lützkendorf ◽  
Jian Liang ◽  
Corette J. Wierenga

The amyloid-β protein precursor is highly expressed in a subset of inhibitory neuron in the hippocampus, and inhibitory neurons have been suggested to play an important role in early Alzheimer’s disease plaque load. Here we investigated bouton dynamics in axons of hippocampal interneurons in two independent amyloidosis models. Short-term (24 h) amyloid-β (Aβ)-oligomer application to organotypic hippocampal slices slightly increased inhibitory bouton dynamics, but bouton density and dynamics were unchanged in hippocampus slices of young-adult AppNL - F - G-mice, in which Aβ levels are chronically elevated. These results indicate that loss or defective adaptation of inhibitory synapses are not a major contribution to Aβ-induced hyperexcitability.


2017 ◽  
Vol 28 (26) ◽  
pp. 3857-3869 ◽  
Author(s):  
Kyoko Chiba ◽  
Ko-yi Chien ◽  
Yuriko Sobu ◽  
Saori Hata ◽  
Shun Kato ◽  
...  

In neurons, amyloid β-protein precursor (APP) is transported by binding to kinesin-1, mediated by JNK-interacting protein 1b (JIP1b), which generates the enhanced fast velocity (EFV) and efficient high frequency (EHF) of APP anterograde transport. Previously, we showed that EFV requires conventional interaction between the JIP1b C-terminal region and the kinesin light chain 1 (KLC1) tetratricopeptide repeat, whereas EHF requires a novel interaction between the central region of JIP1b and the coiled-coil domain of KLC1. We found that phosphorylatable Thr466 of KLC1 regulates the conventional interaction with JIP1b. Substitution of Glu for Thr466 abolished this interaction and EFV, but did not impair the novel interaction responsible for EHF. Phosphorylation of KLC1 at Thr466 increased in aged brains, and JIP1 binding to kinesin-1 decreased, suggesting that APP transport is impaired by aging. We conclude that phosphorylation of KLC1 at Thr466 regulates the velocity of transport of APP by kinesin-1 by modulating its interaction with JIP1b.


Sign in / Sign up

Export Citation Format

Share Document