amyloid protein precursor
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 3)

H-INDEX

49
(FIVE YEARS 0)

2021 ◽  
Vol 22 (10) ◽  
pp. 5140
Author(s):  
Agata Tarkowska ◽  
Wanda Furmaga-Jabłońska ◽  
Jacek Bogucki ◽  
Janusz Kocki ◽  
Ryszard Pluta

Perinatal asphyxia is mainly a brain disease leading to the development of neurodegeneration, in which a number of peripheral lesions have been identified; however, little is known about the expression of key genes involved in amyloid production by peripheral cells, such as lymphocytes, during the development of hypoxic-ischemic encephalopathy. We analyzed the gene expression of the amyloid protein precursor, β-secretase, presenilin 1 and 2 and hypoxia-inducible factor 1-α by RT-PCR in the lymphocytes of post-asphyxia and control neonates. In all examined periods after asphyxia, decreased expression of the genes of the amyloid protein precursor, β-secretase and hypoxia-inducible factor 1-α was noted in lymphocytes. Conversely, expression of presenilin 1 and 2 genes decreased on days 1–7 and 8–14 but increased after survival for more than 15 days. We believe that the expression of presenilin genes in lymphocytes could be a potential biomarker to determine the severity of the post-asphyxia neurodegeneration or to identify the underlying factors for brain neurodegeneration and get information about the time they occurred. This appears to be the first worldwide data on the role of the presenilin 1 and 2 genes associated with Alzheimer’s disease in the dysregulation of neonatal lymphocytes after perinatal asphyxia.



2021 ◽  
Vol 22 (5) ◽  
pp. 2460
Author(s):  
Ryszard Pluta ◽  
Liang Ouyang ◽  
Sławomir Januszewski ◽  
Yang Li ◽  
Stanisław J. Czuczwar

Recent evidence suggests that amyloid and tau protein are of vital importance in post-ischemic death of CA1 pyramidal neurons of the hippocampus. In this review, we summarize protein alterations associated with Alzheimer's disease and their gene expression (amyloid protein precursor and tau protein) after cerebral ischemia, as well as their roles in post-ischemic hippocampus neurodegeneration. In recent years, multiple studies aimed to elucidate the post-ischemic processes in the development of hippocampus neurodegeneration. Their findings have revealed the dysregulation of genes for amyloid protein precursor, β-secretase, presenilin 1 and 2, tau protein, autophagy, mitophagy, and apoptosis identical in nature to Alzheimer's disease. Herein, we present the latest data showing that amyloid and tau protein associated with Alzheimer's disease and their genes play a key role in post-ischemic neurodegeneration of the hippocampus with subsequent development of dementia. Therefore, understanding the underlying process for the development of post-ischemic CA1 area neurodegeneration in the hippocampus in conjunction with Alzheimer's disease-related proteins and genes will provide the most important therapeutic development goals to date.



2020 ◽  
Vol 21 (13) ◽  
pp. 4599 ◽  
Author(s):  
Ryszard Pluta ◽  
Marzena Ułamek-Kozioł ◽  
Sławomir Januszewski ◽  
Stanisław J. Czuczwar

Current evidence indicates that postischemic brain injury is associated with the accumulation of folding proteins, such as amyloid and tau protein, in the intra- and extracellular spaces of neuronal cells. In this review, we summarize protein changes associated with Alzheimer’s disease and their gene expression (amyloid protein precursor and tau protein) after brain ischemia, and their roles in the postischemic period. Recent advances in understanding the postischemic mechanisms in development of neurodegeneration have revealed dysregulation of amyloid protein precursor, α-, β- and γ-secretase and tau protein genes. Reduced expression of the α-secretase gene after brain ischemia with recirculation causes neuronal cells to be less resistant to injury. We present the latest data that Alzheimer’s disease-related proteins and their genes play a crucial role in postischemic neurodegeneration. Understanding the underlying processes of linking Alzheimer’s disease-related proteins and their genes in development of postischemic neurodegeneration will provide the most significant goals to date for therapeutic development.



2020 ◽  
Vol 21 (9) ◽  
pp. 3186 ◽  
Author(s):  
Ryszard Pluta ◽  
Marzena Ułamek-Kozioł ◽  
Sławomir Januszewski ◽  
Stanisław J. Czuczwar

Post-ischemic brain damage is associated with the deposition of folding proteins such as the amyloid and tau protein in the intra- and extracellular spaces of brain tissue. In this review, we summarize the protein changes associated with Alzheimer’s disease and their gene expression (amyloid protein precursor and tau protein) after ischemia-reperfusion brain injury and their role in the post-ischemic injury. Recent advances in understanding the post-ischemic neuropathology have revealed dysregulation of amyloid protein precursor, α-secretase, β-secretase, presenilin 1 and 2, and tau protein genes after ischemic brain injury. However, reduced expression of the α-secretase in post-ischemic brain causes neurons to be less resistant to injury. In this review, we present the latest evidence that proteins associated with Alzheimer’s disease and their genes play a key role in progressive brain damage due to ischemia and reperfusion, and that an ischemic episode is an essential and leading supplier of proteins and genes associated with Alzheimer’s disease in post-ischemic brain. Understanding the underlying processes of linking Alzheimer’s disease-related proteins and their genes in post-ischemic brain injury with the risk of developing Alzheimer’s disease will provide the most significant goals for therapeutic development to date.



2020 ◽  
Vol 725 ◽  
pp. 134914
Author(s):  
E.B. Tereshkina ◽  
I.S. Boksha ◽  
T.A. Prokhorova ◽  
O.K. Savushkina ◽  
G.Sh. Burbaeva ◽  
...  


2019 ◽  
Vol 87 (12) ◽  
pp. 5245-5254
Author(s):  
FATMA AL ZAHRAA N.M. SHERAI, M.Sc.; MOHAMMED A. ROWISHA, M.D. ◽  
MAALY M. MABROUK, M.D.; HEBA E. DAWOUD, M.D.


2019 ◽  
Vol 57 (2) ◽  
pp. 1281-1290 ◽  
Author(s):  
Ryszard Pluta ◽  
Marzena Ułamek-Kozioł ◽  
Janusz Kocki ◽  
Jacek Bogucki ◽  
Sławomir Januszewski ◽  
...  

Abstract Understanding the mechanisms underlying the selective susceptibility to ischemia of the CA3 region is very important to explain the neuropathology of memory loss after brain ischemia. We used a rat model to study changes in gene expression of the amyloid protein precursor and its cleaving enzymes and tau protein in the hippocampal CA3 sector, after transient 10-min global brain ischemia with survival times of 2, 7, and 30 days. The expression of the α-secretase gene was below control values at all times studied. But, the expression of the β-secretase gene was below the control values at 2–7 days after ischemia and the maximal increase in its expression was observed on day 30. Expression of the presenilin 1 gene was significantly elevated above the control values at 2–7 days after ischemia and decreased below the control values at day 30. Expression of the presenilin 2 gene showed an opposite trend to the expression of presenilin 1. Expression of the amyloid protein precursor gene after ischemia was at all times above the control values with a huge significant overexpression on day 7. Additionally, the expression of the tau protein gene was below the control values 2 days after ischemia, but the significant increase in its expression was observed on days 7–30. Data show that brain ischemia activates neuronal changes and death in the CA3 region of the hippocampus in a manner dependent on amyloid and tau protein, thus determining a new and important way to regulate the survival and/or death of ischemic neurons.



Sign in / Sign up

Export Citation Format

Share Document