Optimal design of a redundantly actuated 4-legged six degree of freedom parallel manipulator using composite design index

KSME Journal ◽  
1994 ◽  
Vol 8 (4) ◽  
pp. 385-403 ◽  
Author(s):  
Byung-Ju Yi ◽  
Whee-Kuk Kim
Author(s):  
C. Gosselin

Abstract This paper presents an algorithm for the determination of the workspace of parallel manipulators. The method described here, which is based on geometrical properties of the workspace, leads to a simple graphical representation of the regions of the three-dimensional Cartesian space that are attainable by the manipulator with a given orientation of the platform. Moreover, the volume of the workspace can be easily computed by performing an integration on its boundary, which is obtained from the algorithm. Examples are included to illustrate the application of the method to a six-degree-of-freedom fully-parallel manipulator.


2014 ◽  
Vol 6 ◽  
pp. 157096 ◽  
Author(s):  
Zhu-Feng Shao ◽  
Xiaoqiang Tang ◽  
Wangmin Yi

With outstanding advantages, such as large workspace, flexibility, and lightweight and low inertia, cable-driven parallel manipulator shows great potential for application as the exoskeleton rehabilitation robot. However, the optimal design is still a challenging problem to be solved. In this paper, the optimal design of a 3-DOF (3-degree-of-freedom) cable-driven upper arm exoskeleton is accomplished considering the force exerted on the arm. After analysis of the working conditions, two promising configurations of the cable-driven upper arm exoskeleton are put forward and design parameters are simplified. Then, candidate ranges of two angle parameters are determined with the proposed main workspace requirement. Further, global force indices are defined to evaluate the force applied to the arm by the exoskeleton, in order to enhance the system safety and comfort. Finally, the optimal design of each configuration is obtained with proposed force indices. In addition, atlases and charts given in this paper well illustrate trends of workspace and force with different values of design parameters.


Author(s):  
Wenjia Zhang ◽  
Weiwei Shang ◽  
Bin Zhang ◽  
Fei Zhang ◽  
Shuang Cong

The stiffness of the cable-driven parallel manipulator is usually poor because of the cable flexibility, and the existing methods on trajectory planning mainly take the minimum time and the optimal energy into account, not the stiffness. To solve it, the effects of different trajectories on stiffness are studied for a six degree-of-freedom cable-driven parallel manipulator, according to the kinematic model and the dynamic model. The condition number and the minimum eigenvalue of the dimensionally homogeneous stiffness matrix are selected as performance indices to analyze the stiffness changes during the motion. The simulation experiments are implemented on a six degree-of-freedom cable-driven parallel manipulator, to study the stiffness of three different trajectory planning approaches such as S-type velocity profile, quintic polynomial, and trigonometric function. The accelerations of different methods are analyzed, and the stiffness performances for the methods are compared after planning the point-to-point straight and the curved trajectories. The simulation results indicate that the quintic polynomial and S-type velocity profile have the optimal performance to keep the stiffness stable during the motion control and the travel time of the quintic polynomial can be optimized sufficiently while keeping stable.


Sign in / Sign up

Export Citation Format

Share Document