The state sensitivity analysis of the front wheel steering vehicle: In the time domain

1997 ◽  
Vol 11 (6) ◽  
pp. 595-604 ◽  
Author(s):  
Jin-Hee Jang ◽  
Chang-Soo Han
Author(s):  
Bülent Düz

Abstract Parametric roll is a nonlinear phenomenon that can result in large roll angles coupled with significant pitch motions. These motions might induce large loads on the ship structure, and compromise the safety of the crew and the cargo. The severity of the motions might reach to such levels that capsizing might occur. In this study sensitivity analysis in parametric rolling of a modern cruise ship is investigated using numerical simulations. Several parameters were considered as sources of uncertainty such as the combined effect of GM and roll radius of gyration, roll damping, ship speed, and fin characteristics. In terms of fin characteristics, fin angle rate and maximum angle, fin area and aspect ratio, and fin gains were investigated. Additionally, the non-ergodicity of parametric roll was studied as well as the effect of simulation duration on the statistics of parametric roll. The simulations were carried out with a hybrid time-domain seakeeping and manoeuvring code. The time-domain code was used in combination with a strip-theory based frequency-domain program in order to calculate diffraction and radiation forces as well as added-mass. The time-domain code was able simulate the dynamic behavior of a steered ship in 6-DOF, where the motions can be large up to the moment of capsize.


2019 ◽  
Vol 19 (03) ◽  
pp. 1950025 ◽  
Author(s):  
Kyu Won Kim ◽  
No-Cheol Park ◽  
Weon Keun Song ◽  
Moon Kyum Kim ◽  
Manukid Parnichkun

This paper studies the vibration of a suspended cable with small sag excited by a second excitation (normal) mode causing combination resonance in the three modes, i.e. tangent, normal and bi-normal modes. The displacement response spectra in the time domain and phase portraits are provided as evidence of the transition from the unstable steady-state motion to the stable one for nonlinear cable oscillation. A nondimensional equation for the cable tension is established with its variation evaluated for the unstable zone. The half-normalized sensitivity analysis of cable parameters, such as damping coefficient, excitation amplitude, arc length parameter and initial conditions, for their influence on cable tension is conducted in the time domain by a direct integration method. Also, the characteristics of the dynamic sensitivity of cable tension to the parameters are discussed. As a result, a sensitivity ranking chart is prepared based on the sensitivity analyses for the parameters considered. It is clearly revealed that cable tension is very sensitive to tangent and normal initial displacements in spite of their small values, whereas the same is not true for the arc length parameter and bi-normal damping coefficient. To verify the sensitivity analysis algorithm, a forced Rayleigh oscillator is introduced. A feasibility study using the oscillator shows that the numerical results obtained are in good qualitative agreement with the analytical predictions, implying that the associated algorithm works well.


2021 ◽  
Author(s):  
Lining Zhang

A non-quasi-static model for ferroelectric capacitance is developed in this letter. A state transition in the voltage and time domains between two polarization states is formulated first. The quasi-static model is derived from the state transition of voltage domain, and supports the minor loops. Different from the Preisach model, an initial state is supported, and the modulated coercive voltages are responsible for minor loops. The non-quasi -static model is then derived with the state transition in the time domain, similar to a relaxation approximation in MOSFET modeling. The non-quasi-static model reproduces the saturation loop, minor loops, the frequency-dependent characteristics of measured ferroelectric capacitances, with their origins explained from polarization switching relaxation. The pulse width dependent switching is well reproduced with the model.


Author(s):  
J-C Lee

A hydraulic attenuator has been used in hydraulic active suspension systems of automotive vehicles to reduce high amplitude ripple pressure of a pump. The hydraulic attenuator considered in this study is so highly non-linear and of high order that the analysis in the time domain has been performed infrequently, although the frequency response analysis with the transfer matrix method was applicable. In this paper, a state space representation of the dynamics for a hydraulic attenuator is presented, utilizing the electrical analogy. The results of the experiment are compared with those of the simulation to validate the state space model proposed. The comparison reveals that the state space model proposed is practically applicable for estimating the dynamic responses of the hydraulic attenuator in the time domain.


Sign in / Sign up

Export Citation Format

Share Document