Modeling of crevice solution chemistry on the initiation stage of crevice corrosion in Fe-Cr alloys

1998 ◽  
Vol 4 (6) ◽  
pp. 1199-1206 ◽  
Author(s):  
Hyun-Young Chang ◽  
Yong- Soo Park ◽  
Woon- Suk Hwang
2019 ◽  
Vol 11 (22) ◽  
pp. 45-56 ◽  
Author(s):  
Tadashi Shinohara ◽  
Yuichi Fukaya ◽  
Akira Tahara ◽  
Yuji Hosoya

2000 ◽  
Vol 6 (6) ◽  
pp. 505-511 ◽  
Author(s):  
Hyun-Young Chang ◽  
Yong-Soo Park ◽  
Woon-Suk Hwang

Author(s):  
Anna C. Fraker

Small amounts of nickel are added to titanium to improve the crevice corrosion resistance but this results in an alloy which has sheet fabrication difficulties and is subject to the formation of large Ti2Ni precipitates. These large precipitates can serve as local corrosion sites; but in a smaller more widely dispersed form, they can have a beneficial effect on crevice corrosion resistance. The purpose of the present work is to show that the addition of a small amount of Mo to the Ti-1.5Ni alloy reduces the Ti2Ni precipitate size and produces a more elongated grained microstructure. It has recently been reported that small additions of Mo to Ti-0.8 to lw/o Ni alloys produce good crevice corrosion resistance and improved fabrication properties.


2020 ◽  
Author(s):  
Xiangwen Wang ◽  
Dimitrios Toroz ◽  
Seonmyeong Kim ◽  
Simon Clegg ◽  
Gun-Sik Park ◽  
...  

<div> <p>As natural aqueous solutions are far from being pure water, being rich in ions, the properties of solvated ions are of relevance for a wide range of systems, including biological and geochemical environments. We conducted ab initio and classical MD simulations of the alkaline earth metal ions Mg<sup>2+</sup> and Ca<sup>2+</sup> and of the alkali metal ions Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup> and Cs<sup>+</sup> in pure water and electrolyte solutions containing the counterions Cl<sup>–</sup> and SO<sub>4</sub><sup>2–</sup>. Through a detailed analysis of these simulations, this study reports on the effect of solution chemistry (composition and concentration of the solution) to the ion–water structural properties and interaction strength, and to the dynamics, hydrogen bond network, and low-frequency dynamics of the ionic solvation shell. Except for the ion–water radial distribution function, which is weakly dependent on the counter-ions and concentrations, we found that all other properties can be significantly influenced by the chemical characteristics of the solution. Calculation of the velocity autocorrelation function of magnesium ions, for example, shows that chlorine ions located in the second coordination shell of Mg<sup>2+</sup> weaken the Mg(H<sub>2</sub>O)<sub>6</sub><sup>2+</sup> hydration ‘cage’ of the cation. The result reported in this study suggest that ionic solvation shell can be significantly influenced by the interactions between other ions present in solution ions, especially those of opposite charge. In more general terms, the chemical characteristics of the solution, including the balance between ion-solvent and ion-ion interactions, could result in significant differences in behavior and function of the ionic solvation shell.</p> </div>


Alloy Digest ◽  
1996 ◽  
Vol 45 (1) ◽  

Abstract Allegheny Ludlum AL276 is widely used in the most severe environments found in chemical plants and in power plant desulfurization systems. The high molybdenum level with tungsten gives excellent pitting and crevice corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, joining, and surface treatment. Filing Code: Ni-497. Producer or source: Allegheny Ludlum Corporation.


Sign in / Sign up

Export Citation Format

Share Document