Genetic diversity ofBradyrhizobium japonicum within soybean growing regions of the north-eastern Great Plains of North America as determined by REP-PCR and ERIC-PCR profiling

Symbiosis ◽  
2009 ◽  
Vol 48 (1-3) ◽  
pp. 131-142 ◽  
Author(s):  
Faisal T. Farooq ◽  
J. Kevin Vessey
2021 ◽  
Author(s):  
Ling Zou ◽  
Lars Hoffmann ◽  
Sabine Griessbach ◽  
Lunche Wang

<p>Cirrus clouds in the stratosphere (SCCs) regulate the water vapor budget in the stratosphere, impact the stratosphere and tropopshere exchange, and affect the surface energy balance. But the knowledge of its occurrence and formation mechanism is limited, especially in middle and high latitudes. In this study, we aim to assess the occurrence frequencies of SCC over North America based on The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) instrument during the years 2006 to 2018. Possible driving forces such as deep convection are assessed based on Atmospheric Infrared Sounder (AIRS) observations during the same time. </p><p>Results show that at nighttime, SCCs are most frequently observed during the thunderstorm season over the Great Plains from May to August (MJJA) with maximum occurrence frequency of 6.2%. During the months from November to February (NDJF), the highest SCCs occurrence frequencies are 5.5% over the North-Eastern Pacific, western Canada and 4.4% over the western North Atlantic. Occurrence frequencies of deep convection and strong storm systems from AIRS show similar hotspots like the SCCs, with highest occurrence frequencies being observed over the Great Plains in MJJA (4.4%) and over the North-Eastern Pacific, western Canada and the western North Atlantic in NDJF (~2.5%). Both, seasonal patterns and daily time series of SCCs and deep convection show a high degree of spatial and temporal correlation. As further analysis indicates that the maximum fraction of SCCs generated by deep convection is 74% over the Great Plains in MJJA and about 50% over the western North Atlantic, the North-Eastern Pacific and western Canada in NDJF, we conclude that, locally and regionally, deep convection is a leading factor for the formation of SCCs over North America. Other studies stressed the relevance of isentropic transport, double tropopause events, or gravity waves for the formation of SCCs. </p><p>In this study, we also analyzed the impact of gravity waves as a secondary formation mechanism for SCCs, as the Great Plains is a well-known hotspot for stratospheric gravity waves. In case of SCCs that are not directly linked to deep convection, we found that stratospheric gravity wave observations correlate in as much as 30% of the cases over the Great Plains in MJJA, about 50% over the North-Eastern Pacific, western Canada and maximally 90% over eastern Canada and the north-west Atlantic in NDJF. </p><p>Our results provide better understanding of the physical processes and climate variability related to SCCs and will be of interest for modelers as SCC sources such as deep convection and gravity waves are small-scale processes that are difficult to represent in global general circulation models. </p>


2021 ◽  
Author(s):  
Ling Zou ◽  
Lars Hoffmann ◽  
Sabine Griessbach ◽  
Reinhold Spang ◽  
Lunche Wang

Abstract. Cirrus clouds in the lowermost stratosphere affect stratospheric water vapor and the Earth's radiation budget. The knowledge of its occurrence and driving forces is limited. To assess the distribution and possible formation mechanisms of stratospheric cirrus clouds (SCCs) over North America, we analyzed SCC occurrence frequencies observed by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) instrument during the years 2006 to 2018. Possible driving forces such as deep convection are assessed based on Atmospheric Infrared Sounder (AIRS) observations during the same time. Results show that at nighttime, SCCs are most frequently observed during the thunderstorm season over the Great Plains from May to August (MJJA) with a maximum occurrence frequency of 6.2 %. During the months from November to February (NDJF), the highest SCCs occurrence frequencies are 5.5 % over the North-Eastern Pacific, western Canada and 4.4 % over the western North Atlantic. Occurrence frequencies of deep convection from AIRS, which includes storm systems, fronts, mesoscale convective systems and mesoscale convective complexes at mid- and high latitude, show similar hotspots like the SCCs, with highest occurrence frequencies being observed over the Great Plains in MJJA (4.4 %) and over the North-Eastern Pacific, western Canada and the western North Atlantic in NDJF (~2.5 %). Both, seasonal patterns and daily time series of SCCs and deep convection show a high degree of spatial and temporal relation. Further analysis indicates that the maximum fraction of SCCs related to deep convection is 74 % over the Great Plains in MJJA and about 50 % over the western North Atlantic, the North-Eastern Pacific and western Canada in NDJF. We conclude that, locally and regionally, deep convection is the leading factor related to occurrence of SCCs over North America. In this study, we also analyzed the impact of gravity waves as another important factor related to the occurrence SCCs, as the Great Plains is a well-known hotspot for stratospheric gravity waves. In the cases where SCCs are not directly linked to deep convection, we found that stratospheric gravity wave observations correlate with SCCs in as much as 30 % of the cases over the Great Plains in MJJA, about 50 % over the North-Eastern Pacific, western Canada and up to 90 % over eastern Canada and the north-west Atlantic in NDJF. Our results provide better understanding of the physical processes and climate variability related to SCCs and will be of interest for modelers as SCC sources such as deep convection and gravity waves are small-scale processes that are difficult to represent in global general circulation models.


2021 ◽  
Vol 21 (13) ◽  
pp. 10457-10475
Author(s):  
Ling Zou ◽  
Lars Hoffmann ◽  
Sabine Griessbach ◽  
Reinhold Spang ◽  
Lunche Wang

Abstract. Ice clouds in the lowermost stratosphere affect stratospheric water vapour and the Earth's radiation budget. The knowledge of its occurrence and driving forces is limited. To assess the distribution and possible formation mechanisms of stratospheric ice clouds (SICs) over North America, we analysed SIC occurrence frequencies observed by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) instrument during the years 2006 to 2018. Possible driving forces such as deep convection are assessed based on Atmospheric Infrared Sounder (AIRS) observations during the same time. Results show that at nighttime, SICs are most frequently observed during the thunderstorm season over the Great Plains from May to August (MJJA) with a maximum occurrence frequency of 6.2 %. During the months from November to February (NDJF), the highest SICs occurrence frequencies are 5.5 % over the north-eastern Pacific and western Canada and 4.4 % over the western North Atlantic. Occurrence frequencies of deep convection from AIRS, which includes storm systems, fronts, mesoscale convective systems, and mesoscale convective complexes at midlatitude and high latitude, show similar hotspots like the SICs, with highest occurrence frequencies being observed over the Great Plains in MJJA (4.4 %) and over the north-eastern Pacific, western Canada, and the western North Atlantic in NDJF (∼ 2.5 %). Both, seasonal patterns and daily time series of SICs and deep convection show a high degree of spatial and temporal relation. Further analysis indicates that the maximum fraction of SICs related to deep convection is 74 % over the Great Plains in MJJA and about 50 % over the western North Atlantic, the north-eastern Pacific, and western Canada in NDJF. We conclude that, locally and regionally, deep convection is the leading factor related to the occurrence of SICs over North America. In this study, we also analysed the impact of gravity waves as another important factor related to the occurrence of SICs, as the Great Plains is a well-known hotspot for stratospheric gravity waves. In the cases where SICs are not directly linked to deep convection, we found that stratospheric gravity wave observations correlate with SICs with as much as 30 % of the cases over the Great Plains in MJJA, about 50 % over the north-eastern Pacific and western Canada, and up to 90 % over eastern Canada and the north-west Atlantic in NDJF. Our results provide a better understanding of the physical processes and climate variability related to SICs and will be of interest for modellers as SIC sources such as deep convection and gravity waves are small-scale processes that are difficult to represent in global general circulation models.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Kevin P. Drees ◽  
Jeffrey M. Lorch ◽  
Sebastien J. Puechmaille ◽  
Katy L. Parise ◽  
Gudrun Wibbelt ◽  
...  

ABSTRACT Globalization has facilitated the worldwide movement and introduction of pathogens, but epizoological reconstructions of these invasions are often hindered by limited sampling and insufficient genetic resolution among isolates. Pseudogymnoascus destructans , a fungal pathogen causing the epizootic of white-nose syndrome in North American bats, has exhibited few genetic polymorphisms in previous studies, presenting challenges for both epizoological tracking of the spread of this fungus and for determining its evolutionary history. We used single nucleotide polymorphisms (SNPs) from whole-genome sequencing and microsatellites to construct high-resolution phylogenies of P. destructans . Shallow genetic diversity and the lack of geographic structuring among North American isolates support a recent introduction followed by expansion via clonal reproduction across the epizootic zone. Moreover, the genetic relationships of isolates within North America suggest widespread mixing and long-distance movement of the fungus. Genetic diversity among isolates of P. destructans from Europe was substantially higher than in those from North America. However, genetic distance between the North American isolates and any given European isolate was similar to the distance between the individual European isolates. In contrast, the isolates we examined from Asia were highly divergent from both European and North American isolates. Although the definitive source for introduction of the North American population has not been conclusively identified, our data support the origin of the North American invasion by P. destructans from Europe rather than Asia. IMPORTANCE This phylogenetic study of the bat white-nose syndrome agent, P. destructans , uses genomics to elucidate evolutionary relationships among populations of the fungal pathogen to understand the epizoology of this biological invasion. We analyze hypervariable and abundant genetic characters (microsatellites and genomic SNPs, respectively) to reveal previously uncharacterized diversity among populations of the pathogen from North America and Eurasia. We present new evidence supporting recent introduction of the fungus to North America from a diverse Eurasian population, with limited increase in genetic variation in North America since that introduction.


2016 ◽  
Author(s):  
Cristian Correa ◽  
Paul Moran

AbstractChinook salmon native to North America are spreading through South America’s Patagonia and have become the most widespread anadromous salmon invasion ever documented. To better understand the colonization history and role that genetic diversity might have played in the founding and radiation of these new populations, we characterized ancestry and genetic diversity across latitude (39-48°S). Samples from four distant basins in Chile were genotyped for 13 microsatellite loci, and allocated, through probabilistic mixture models, to 148 potential donor populations in North America representing 46 distinct genetic lineages. Patagonian Chinook salmon clearly had a diverse and heterogeneous ancestry. Lineages from the Lower Columbia River were introduced for salmon open-ocean ranching in the late 1970s and 1980s, and were prevalent south of 43°S. In the north, however, a diverse assembly of lineages was found, associated with net-pen aquaculture during the 1990s. Finally, we showed that possible lineage admixture in the introduced range can confound allocations inferred from mixture models, a caveat previously overlooked in studies of this kind. While we documented high genetic and lineage diversity in expanding Patagonian populations, the degree to which diversity drives adaptive potential remains unclear. Our new understanding of diversity across latitude will guide future research.


Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1741-1755 ◽  
Author(s):  
Jonas Bunikis ◽  
Ulf Garpmo ◽  
Jean Tsao ◽  
Johan Berglund ◽  
Durland Fish ◽  
...  

The genetic polymorphism of Borrelia burgdorferi and Borrelia afzelii, two species that cause Lyme borreliosis, was estimated by sequence typing of four loci: the rrs–rrlA intergenic spacer (IGS) and the outer-membrane-protein gene p66 on the chromosome, and the outer-membrane-protein genes ospA and ospC on plasmids. The major sources of DNA for PCR amplification and sequencing were samples of the B. burgdorferi tick vector Ixodes scapularis, collected at a field site in an endemic region of the north-eastern United States, and the B. afzelii vector Ixodes ricinus, collected at a similar site in southern Sweden. The sequences were compared with those of reference strains and skin biopsy isolates, as well as database sequences. For B. burgdorferi, 10–13 alleles for each of the 4 loci, and a total of 9 distinct clonal lineages with linkage of all 4 loci, were found. For B. afzelii, 2 loci, ospC and IGS, were examined, and 11 IGS genotypes, 12 ospC alleles, and a total of 9 linkage groups were identified. The genetic variants of B. burgdorferi and B. afzelii among samples from the field sites accounted for the greater part of the genetic diversity previously reported from larger areas of the north-eastern United States and central and northern Europe. Although ospC alleles of both species had higher nucleotide diversity than other loci, the ospC locus showed evidence of intragenic recombination and was unsuitable for phylogenetic inference. In contrast, there was no detectable recombination at the IGS locus of B. burgdorferi. Moreover, beyond the signature nucleotides that specified 10 IGS genotypes, there were additional nucleotide polymorphisms that defined a total of 24 subtypes. Maximum-likelihood and parsimony cladograms of B. burgdorferi aligned IGS sequences revealed the subtype sequences to be terminal branches of clades, and the existence of at least three monophyletic lineages within B. burgdorferi. It is concluded that B. burgdorferi and B. afzelii have greater genetic diversity than had previously been estimated, and that the IGS locus alone is sufficient for strain typing and phylogenetic studies.


2020 ◽  
Vol 7 (1) ◽  
pp. 38-43
Author(s):  
Simon van Bellen ◽  
Anne de Vernal ◽  
Anna To ◽  
Marie‐Michèle Ouellet‐Bernier ◽  
Natasha Roy ◽  
...  

Genome ◽  
2003 ◽  
Vol 46 (6) ◽  
pp. 1037-1048 ◽  
Author(s):  
Patrick Pollefeys ◽  
Jean Bousquet

French-American hybrid grapevines are most popular in eastern and mid-western North America: they are hardy cultivars derived from crosses between the European Vitis vinifera and American wild vines. The aim of this study was to characterize their genetic background using 6 microsatellite (SSR) markers and a set of 33 diagnostic RAPD markers. The latter were reproducible with different PCR thermal cyclers. Two SSR loci were found to be synonymous, VrZAG47 and VVMD27. The DNA profile frequencies estimated for each cultivar were much lower with multi-locus SSR data than that obtained from multi-fragment RAPD data. There was no significant correlation between the multi-locus DNA profile frequencies derived from SSRs and those from RAPDs. Estimates of genetic diversity derived from SSRs were generally higher and the average similarity between cultivars was generally lower than values reported for subgroups of V. vinifera, in accordance with expectations for hybrid cultivars. The phenetic relationships depicted by UPGMA (unweighted pair-group method with arithmetic averaging) and neighbor-joining analyses of microsatellite data were congruent and, to a large extent, in agreement with the known pedigree or history of each cultivar. A major dichotomy was observed between one group where the known genetic background was dominated by the North American Vitis riparia and Vitis labrusca, and another one where the genetic background was dominated by the European V. vinifera. Two Kulhmann varieties thought to be synonymous were found to be different, though closely related.Key words: French-American hybrids, genetic diversity, RAPD, SSR, Vitis.


Sign in / Sign up

Export Citation Format

Share Document