Effect of multi-walled carbon nanotube dispersion on the electrical, morphological and rheological properties of polycarbonate/multi-walled carbon nanotube composites

2009 ◽  
Vol 17 (11) ◽  
pp. 863-869 ◽  
Author(s):  
Mi Sun Han ◽  
Yun Kyun Lee ◽  
Woo Nyon Kim ◽  
Heon Sang Lee ◽  
Jin Soo Joo ◽  
...  
Carbon ◽  
2011 ◽  
Vol 49 (12) ◽  
pp. 4024-4030 ◽  
Author(s):  
Mokwon Kim ◽  
Sung Cik Mun ◽  
Choon Soo Lee ◽  
Min Hee Lee ◽  
Younggon Son ◽  
...  

2016 ◽  
Vol 33 (2) ◽  
pp. 191-206 ◽  
Author(s):  
Changjin Li ◽  
Zhiwei Jiao ◽  
Liangzhao Xiong ◽  
Weimin Yang

Polypropylene/multiwall carbon nanotube composites with 1, 9, 81, and 729 layers were prepared with a novel microlayer extrusion technology. The influences of multiwall carbon nanotube dispersion and orientation on crystallization behavior, mechanical properties, and thermal stability of composites were investigated. The results indicated that homogeneous dispersion and improved multiwall carbon nanotube orientation in matrix were obtained with more layers. The tensile strength, Young’s modulus, and elongation at break of polypropylene/multiwall carbon nanotube composites with 729 layers increased by 77%, 78%, and 149%, respectively, compared with 1 layer composites. The 81 and 729 layer samples displayed obvious double yielding points on the stress–strain curves. Furthermore, thermogravimetric analysis showed that the composites with more layers exhibited better thermal stability than the 1 layer composites. These results suggest that multiwall carbon nanotube dispersion and orientation in a matrix can be effectively improved through microlayer extrusion.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 832
Author(s):  
Edna X. Figueroa-Rosales ◽  
Javier Martínez-Juárez ◽  
Esmeralda García-Díaz ◽  
Daniel Hernández-Cruz ◽  
Sergio A. Sabinas-Hernández ◽  
...  

Hydroxyapatite (HAp) and hydroxyapatite/multi-walled carbon nanotube (MWCNT) composites were obtained by the co-precipitation method, followed by ultrasound-assisted and microwave radiation and thermal treatment at 250 °C. X-ray diffraction (XRD) confirmed the presence of a hexagonal phase in all the samples, while Fourier-transform infrared (FTIR) spectroscopy elucidated the interaction between HAp and MWCNTs. The photoluminescent technique revealed that HAp and the composite with non-functionalized MWCNTs present a blue luminescence, while the composite with functionalized MWCNTs, under UV-vis radiation shows an intense white emission. These findings allowed presentation of a proposal for the use of HAp and HAp with functionalized MWCNTs as potential materials for optoelectronic and medical applications.


Sign in / Sign up

Export Citation Format

Share Document