scholarly journals Hyaluronic Acid Combined with Serum Rich in Growth Factors in Corneal Epithelial Defects

2019 ◽  
Vol 20 (7) ◽  
pp. 1655 ◽  
Author(s):  
Carlota Suárez-Barrio ◽  
Jaime Etxebarria ◽  
Raquel Hernáez-Moya ◽  
Marina del Val-Alonso ◽  
Maddalen Rodriguez-Astigarraga ◽  
...  

The aim of this study is to assess if an adhesive biopolymer, sodium hyaluronate (NaHA), has synergistic effects with s-PRGF (a serum derived from plasma rich in growth factors and a blood derivative that has already shown efficacy in corneal epithelial wound healing), to reduce time of healing or posology. In vitro proliferation and migration studies, both in human corneal epithelial (HCE) cells and in rabbit primary corneal epithelial (RPCE) cultures, were carried out. In addition, we performed studies of corneal wound healing in vivo in rabbits treated with s-PRGF, NaHA, or the combination of both. We performed immunohistochemistry techniques (CK3, CK15, Ki67, ß4 integrin, ZO-1, α-SMA) in rabbit corneas 7 and 30 days after a surgically induced epithelial defect. In vitro results show that the combination of NaHA and s-PRGF offers the worst proliferation rates in both HCE and RPCE cells. Addition of NaHA to s-PRGF diminishes the re-epithelializing capability of s-PRGF. In vivo, all treatments, given twice a day, showed equivalent efficacy in corneal epithelial healing. We conclude that the combined use of s-PRGF and HaNA as an adhesive biopolymer does not improve the efficacy of s-PRGF alone in the wound healing of corneal epithelial defects.

Author(s):  
Xuan Zhao ◽  
Xin Zuo ◽  
Jing Zhong ◽  
Bowen Wang ◽  
Saiqun Li ◽  
...  

Ocular chemical burns are potentially blinding ocular injuries and require urgent management. Amniotic membrane (AM) transplantation is an effective surgical treatment, one of the reasons is because AM is a rich source of growth factors that can promote epithelialization and wound healing. However, growth factors will be gradually lost and insufficient after preparation process and long-time storage, leading to unsatisfactory therapeutic effects. Herein, we present a modified AM (AM-HEP) for the supplement and sustained release of growth factor by surface grafting heparin for treatment of ocular chemical burns. Heparin grafting rate and stability, microstructure, physical property, and sustained release of epithelial growth factor (EGF) of AM-HEP were characterized. Biocompatibility and ability to promote corneal epithelial cell growth and migration were evaluated and compared with a biological amnion, which is available on the market in vitro. The therapeutic effects of AM-HEP combined with EGF (AM-HEP@EGF) in vivo had been evaluated in a model of mouse corneal alkali burn. The results indicated that heparin was introduced into AM and maintain stability over 3 weeks at 37°C. The modification process of AM-HEP did not affect microstructure and physical property after comparing with non-modified AM. EGF could be combined quickly and effectively with AM-HEP; the sustained release could last for more than 14 days. AM-HEP@EGF could significantly promote corneal epithelial cell growth and migration, compared with non-modified AM and control group. Faster corneal epithelialization was observed with the transplantation of AM-HEP@EGF in vivo, compared with the untreated control group. The corneas in the AM-HEP@EGF group have less inflammation and were more transparent than those in the control group. The results from in vitro and in vivo experiments demonstrated that AM-HEP@EGF could significantly enhance the therapeutic effects. Taken together, AM-HEP@EGF is exhibited to be a potent clinical application in corneal alkali burns through accelerating corneal epithelial wound healing.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 75 ◽  
Author(s):  
Sara Paola Hernández Martínez ◽  
Teodoro Iván Rivera González ◽  
Moisés Armides Franco Molina ◽  
Juan José Bollain y Goytia ◽  
Juan José Martínez Sanmiguel ◽  
...  

The development of new nanomaterials to promote wound healing is rising, because of their topical administration and easy functionalization with molecules that can improve and accelerate the process of healing. A nanocomposite of gold nanoparticles (AuNPs) functionalized with calreticulin was synthetized and evaluated. The ability of the nanocomposite to promote proliferation and migration was determined in vitro, and in vivo wound healing was evaluated using a mice model of diabetes established with streptozotocin (STZ). In vitro, the nanocomposite not affect the cell viability and the expression of proliferating cell nuclear antigen (PCNA). Moreover, the nanocomposite promotes the clonogenicity of keratinocytes, endothelial cells, and fibroblasts, and accelerates fibroblast migration. In vivo, mice treated with the nanocomposite presented significantly faster wound healing. The histological evaluation showed re-epithelization and the formation of granular tissue, as well as an increase of collagen deposition. Therefore, these results confirm the utility of AuNPs–calreticulin nanocomposites as potential treatment for wound healing of diabetic ulcers.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Amritha Vijayan ◽  
Sabareeswaran A. ◽  
G. S. Vinod Kumar

AbstractApplication of growth factors at wound site has improved the efficiency and quality of healing. Basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) induce proliferation of various cells in wound healing. Delivery of growth factor from controlled release systems protect it from degradation and also result in sustained delivery of it at the site of injury. The goal of the study was to develop a Polyethylene glycol (PEG) cross-linked cotton-like chitosan scaffold (CS-PEG-H) by freeze-drying method and chemically conjugate heparin to the scaffold to which the growth factors can be electrostatically bound and evaluate its wound healing properties in vitro and in vivo. The growth factor containing scaffolds induced increased proliferation of HaCaT cells, increased neovascularization and collagen formation seen by H and E and Masson’s trichrome staining. Immunohistochemistry was performed using the Ki67 marker which increased proliferation of cells in growth factor containing scaffold treated group. Frequent dressing changes are a major deterrent to proper wound healing. Our system was found to release both VEGF and bFGF in a continuous manner and attained stability after 7 days. Thus our system can maintain therapeutic levels of growth factor at the wound bed thereby avoiding the need for daily applications and frequent dressing changes. Thus, it can be a promising candidate for wound healing.


1993 ◽  
Vol 6 (2) ◽  
pp. 96-103 ◽  
Author(s):  
Steven S. Matsumoto ◽  
Michael E. Stern ◽  
Roger M. Oda ◽  
Corine R. Ghosn ◽  
Josephine W. Cheng ◽  
...  

Author(s):  
Mariliis Klaas ◽  
Kristina Mäemets-Allas ◽  
Elizabeth Heinmäe ◽  
Heli Lagus ◽  
Claudia Griselda Cárdenas-León ◽  
...  

Thrombospondin-4 (THBS4) is a non-structural extracellular matrix molecule associated with tissue regeneration and a variety of pathological processes characterized by increased cell proliferation and migration. However, the mechanisms of how THBS4 regulates cell behavior as well as the pathways contributing to its effects have remained largely unexplored. In the present study we investigated the role of THBS4 in skin regeneration both in vitro and in vivo. We found that THBS4 expression was upregulated in the dermal compartment of healing skin wounds in humans as well as in mice. Application of recombinant THBS4 protein promoted cutaneous wound healing in mice and selectively stimulated migration of primary fibroblasts as well as proliferation of keratinocytes in vitro. By using a combined proteotranscriptomic pathway analysis approach we discovered that β-catenin acted as a hub for THBS4-dependent cell signaling and likely plays a key role in promoting its downstream effects. Our results suggest that THBS4 is an important contributor to wound healing and its incorporation into novel wound healing therapies may be a promising strategy for treatment of cutaneous wounds.


2020 ◽  
Author(s):  
Yi-Fan Shen ◽  
Jing-Huan Huang ◽  
Kai-Yang Wang ◽  
Jin Zheng ◽  
Lin Cai ◽  
...  

Abstract Background: Diabetic wounds are a disturbing and rapidly growing clinical problem. A novel peptide, parathyroid hormone related peptide (PTHrP-2), is assumed as multifunctional factor in angiogenesis, fibrogenesis and re-epithelization. This study aims to test PTHrP-2 efficiency and mechanism in wound healing. Methods: Through repair phenomenon in vivo some problems were detected, and further research on their mechanisms was made. In vivo therapeutic effects of PTHrP-2 were determined by HE, Masson, microfil and immunohistochemical staining. In vitro direct effects of PTHrP-2 were determined by proliferation, migration, Vascular Endothelial Grown Factor and collagen I secretion of cells and Akt/ Erk1/2 pathway change. In vitro indirect effects of PTHrP-2 was study via exosomes. Exosomes from PTHrP-2 untreated and treated HUVECs and HFF-1 cells were insolated and identified. Exosomes were co-cultured with original cells, HUVECs or HFF-1 cells, and epithelial cells. Proliferation and migration and pathway change were observed. PTHrP-2-HUVEC-Exos were added into in vivo wound to testify its hub role in PTHrP-2 indirect effects in wound healing. Results: In vivo, PTHrP-2 exerted multifunctional pro-angiogenesis, pro-firbogenesis and re-epithelization effects. In vitro, PTHrP-2 promoted proliferation and migration of endothelial and fibroblast cells, but had no effect on epithelial cells. Therefore, we tested PTHrP-2 indirect effects via exosomes. PTHrP-2 intensified intercellular communication between endothelial cells and fibroblasts and initiated endothelial-epithelial intercellular communication. PTHrP-2-HUVEC-Exos played a hub role in PTHrP-2 indirect effects in wound healing. Conclusion: These findings of this study indicated that PTHrP-2, a multifunctional factor, could promote wound healing via synergistic multicellular stimulating and exosomal activities. Key words PTH, multifunctional factor, diabetic wound, exosomes, synergistic effect


2022 ◽  
Vol 2022 ◽  
pp. 1-23
Author(s):  
Yan Shi ◽  
Shang Wang ◽  
Ronghua Yang ◽  
Zhenmin Wang ◽  
Weiwei Zhang ◽  
...  

We previously showed that wound-induced hypoxia is related to keratinocyte migration. The ability of keratinocytes within wound healing to undergo epithelial to mesenchymal transition (EMT) contributes significantly to the acquisition of migratory properties. However, the effect of hypoxia on keratinocyte EMT on wound healing and the potential mechanism are poorly documented. This study first demonstrated that reactive oxygen species (ROS) appear to be an essential signalling mediator in keratinocytes with increased EMT and migration subjected to hypoxic conditions. Next, we showed that the expression of sex-determining region Y-box 2 (SOX2), a stemness-associated molecule, is ROS-dependent under hypoxia and that SOX2 inhibition in keratinocytes dramatically prevented hypoxia-induced EMT and migration. In addition, β-catenin was found to be a potential molecular target of SOX2, and the activation of Wnt/β-catenin was required for hypoxia-induced EMT and migration. Using an in vitro skin culture model and an in vivo skin wound model, our study further reinforced the critical role of ROS in inducing EMT through SOX2 expression and subsequent activation of Wnt/β-catenin, allowing for rapid reepithelialization of the wound area. Taken together, our findings reveal a previously unknown mechanism by which hypoxia promotes wound healing by promoting reepithelialization through the production of ROS, inducing keratinocyte EMT and migration via the enhancement of SOX2 and activation of Wnt/β-catenin.


1993 ◽  
Vol 105 (1) ◽  
pp. 179-190 ◽  
Author(s):  
G. Zambruno ◽  
P.C. Marchisio ◽  
A. Melchiori ◽  
S. Bondanza ◽  
R. Cancedda ◽  
...  

Integrin receptors of human melanocytes in vivo and of melanocytes isolated and cultured from in vitro reconstituted normal human epidermis were investigated. Melanocytes were studied by high-resolution immunocytochemistry of in situ epidermis and were found to expose only the integrin subunits alpha 3, alpha 6, alpha v and beta 1 on their plasma membrane surface. Instead, cultured normal melanocytes expressed alpha 3 beta 1, alpha 5 beta 1, alpha 6 beta 1 and alpha v beta 3, which were immunoprecipitated from both metabolically and surface-labeled cells. Beta 1 integrins were diffused on the adhesion surface, while alpha v beta 3 was clustered in focal contacts both in control cells and upon dendrite induction with phorbol 12-myristate 13-acetate (PMA). The functional roles of integrins were studied in vitro by cell adhesion, spreading and migration assays. The sum of the data indicated that, in normal human melanocytes: (i) adhesion to defined substrata is mainly mediated by specific beta 1 integrins; (ii) spreading is mainly modulated by alpha v beta 3; (iii) the beta 1 and beta 3 heterodimers cooperate in regulating migration. The in vitro expression of two integrins (alpha v beta 3 and alpha 5 beta 1) that are not exposed in situ, and their role in the spreading and migratory properties of melanocytes, strongly suggest that they are involved in regenerating a normally pigmented epidermis during wound healing by controlling melanocyte spreading and migration over a provisional matrix. Tumor promoters, such as PMA, selectively increased the expression of alpha 3 beta 1. We suggest that this integrin might be involved in melanocyte migration on the newly formed basement membrane during wound healing as well as in intercellular recognition of adjacent keratinocytes.


2006 ◽  
Vol 47 (5) ◽  
pp. 1862 ◽  
Author(s):  
Masanao Watanabe ◽  
Shoichi Kondo ◽  
Ken Mizuno ◽  
Wataru Yano ◽  
Hiroshi Nakao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document