The G972R variant of the insulin receptor substrate-1 (IRS-1) gene is associated with insulin resistance in “uncomplicated” obese subjects evaluated by hyperinsulinemic-euglycemic clamp

2004 ◽  
Vol 27 (8) ◽  
pp. 754-759 ◽  
Author(s):  
M. G. Baroni ◽  
F. Leonetti ◽  
F. Sentinelli ◽  
S. Romeo ◽  
E. Filippi ◽  
...  
2016 ◽  
Vol 31 (1) ◽  
pp. 68-72 ◽  
Author(s):  
Touraj Mahmoudi ◽  
Keivan Majidzadeh-A ◽  
Khatoon Karimi ◽  
Hamid Farahani ◽  
Reza Dabiri ◽  
...  

Background Given the major role of obesity and insulin resistance (IR) in colorectal cancer (CRC), we investigated whether genetic variants in ghrelin ( GHRL), resistin ( RETN) and insulin receptor substrate 1 ( IRS1) were associated with CRC risk. Methods This study was conducted as a case-control study, and 750 subjects, including 438 controls and 312 patients with CRC, were enrolled and genotyped using the PCR-RFLP method. Results No significant differences were observed for GHRL (rs696217), RETN (rs3745367) and IRS1 (rs1801278, Gly972Arg or G972R) gene variants between the cases and controls. However, the IRS1 G972R R allele compared with the G allele and the G972R RR+GR genotype compared with the GG genotype appeared to be markers of decreased CRC susceptibility in the overweight/obese subjects (p = 0.024; odds ratio [OR] = 0.42, 95% confidence interval [95% CI], 0.20-0.91; and p = 0.048; OR = 0.42, 95% CI, 0.17-0.99, respectively). Furthermore, the R allele and RR+GR genotype were also associated with decreased risks for obesity in the patients with CRC (p = 0.007; OR = 0.35, 95% CI, 0.15-0.77; and p = 0.015; OR = 0.35, 95% CI, 0.15-0.72, respectively). Conclusions In accordance with previous studies, our findings suggest that the IRS1 G972R R allele and RR+GR genotype have protective effects for CRC in overweight/obese patients and for obesity in patients with CRC. Nevertheless, further studies are required to confirm these findings.


2004 ◽  
Vol 24 (21) ◽  
pp. 9668-9681 ◽  
Author(s):  
Yan-Fang Liu ◽  
Avia Herschkovitz ◽  
Sigalit Boura-Halfon ◽  
Denise Ronen ◽  
Keren Paz ◽  
...  

ABSTRACT Ser/Thr phosphorylation of insulin receptor substrate (IRS) proteins negatively modulates insulin signaling. Therefore, the identification of serine sites whose phosphorylation inhibit IRS protein functions is of physiological importance. Here we mutated seven Ser sites located proximal to the phosphotyrosine binding domain of insulin receptor substrate 1 (IRS-1) (S265, S302, S325, S336, S358, S407, and S408) into Ala. When overexpressed in rat hepatoma Fao or CHO cells, the mutated IRS-1 protein in which the seven Ser sites were mutated to Ala (IRS-17A), unlike wild-type IRS-1 (IRS-1WT), maintained its Tyr-phosphorylated active conformation after prolonged insulin treatment or when the cells were challenged with inducers of insulin resistance prior to acute insulin treatment. This was due to the ability of IRS-17A to remain complexed with the insulin receptor (IR), unlike IRS-1WT, which underwent Ser phosphorylation, resulting in its dissociation from IR. Studies of truncated forms of IRS-1 revealed that the region between amino acids 365 to 430 is a main insulin-stimulated Ser phosphorylation domain. Indeed, IRS-1 mutated only at S408, which undergoes phosphorylation in vivo, partially maintained the properties of IRS-17A and conferred protection against selected inducers of insulin resistance. These findings suggest that S408 and additional Ser sites among the seven mutated Ser sites are targets for IRS-1 kinases that play a key negative regulatory role in IRS-1 function and insulin action. These sites presumably serve as points of convergence, where physiological feedback control mechanisms, which are triggered by insulin-stimulated IRS kinases, overlap with IRS kinases triggered by inducers of insulin resistance to terminate insulin signaling.


1992 ◽  
Vol 90 (5) ◽  
pp. 1839-1849 ◽  
Author(s):  
M J Saad ◽  
E Araki ◽  
M Miralpeix ◽  
P L Rothenberg ◽  
M F White ◽  
...  

2007 ◽  
Vol 22 (4) ◽  
pp. 1003-1010 ◽  
Author(s):  
Kok-Min Seow ◽  
Chi-Chang Juan ◽  
Yung-Pei Hsu ◽  
Jiann-Loung Hwang ◽  
Lee-Wen Huang ◽  
...  

2014 ◽  
Vol 2 (12) ◽  
pp. e12236 ◽  
Author(s):  
Charles A. Stuart ◽  
Mary E. A. Howell ◽  
Brian M. Cartwright ◽  
Melanie P. McCurry ◽  
Michelle L. Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document