Trace metal accumulation in black shales from the Cenomanian/Turonian Boundary Event

Author(s):  
Hans-Jürgen Brumsack
2020 ◽  
Vol 8 (5) ◽  
pp. 453-460
Author(s):  
Dnyaneshwar Shinde ◽  
D. M. Mahajan ◽  
Ashwini Pawar ◽  
Madhuri Kale ◽  
Sanjay Chakane

1993 ◽  
Vol 26 (3) ◽  
pp. 152-155 ◽  
Author(s):  
C. Wenzel ◽  
D. Adelung ◽  
H. Kruse ◽  
O. Wassermann

Author(s):  
Qiong Gong ◽  
Peizhen Chen ◽  
Rongguang Shi ◽  
Yi Gao ◽  
Shun-An Zheng ◽  
...  

The application of organic fertilizer could be accompanied by potential hazards to soil and humans caused by trace metals. A wide survey of organic fertilizers was carried out in northern China. A total of 117 organic fertilizer samples were collected to analyze the concentrations of seven trace metals. Simulation models were used to estimate the trace metal accumulation risk in soil and non-carcinogenic and carcinogenic risks to the human body. The concentrations of trace metals varied widely (Cr: 2.74–151.15; Ni: 2.94–49.35; Cu: 0.76–378.32; Zn: 0.50–1748.01; As: 1.54–23.96; Cd: 2.74–151.15; and Pb: 1.60–151.09 mg·kg−1). Chinese organic fertilizer standard limits were exceeded by0.85% for Cr, 5.98% for As, 1.71% for Cd, and 4.27% for Pb. Monte Carlo simulations showed that repeated application of organic fertilizer likely significantly increased the concentrations of Zn, Cd, and As in soil compared with the soil background levels according to the Soil Environmental Quality Standards of China. As and Cr pose high risks to human health, especially as carcinogenic risk factors with a skin exposure pathway. Reducing the content of Cr, Cu, Zn, As, and Cd in organic fertilizer would be of great significance for minimizing the damage caused by trace metals.


1992 ◽  
Vol 24 (1) ◽  
pp. 118-130 ◽  
Author(s):  
M.E. Dodds-Smith ◽  
M.S. Johnson ◽  
D.J. Thompson

Author(s):  
Philip S. Rainbow

Trace metals are accumulated by marine invertebrates to body concentrations higher, in many cases orders of magnitude higher, than the concentrations in an equivalent weight of the surrounding sea-water (Eisler, 1981; Rainbow, 1990; Phillips & Rainbow, 1993). Specific details of trace metal accumulation processes vary within the same invertebrate species between metals, and for the same trace metal between invertebrates, often between closely related species (Rainbow, 1990, 1993). This short review attempts to highlight some of the comparative aspects of the processes involved that are expected and explicable in terms of the chemistry of the respective elements, and those where the physiology of the species involved intervenes to offset predictions from purely chemical principles. Although an appreciation of trace metal chemistry is crucial to an understanding of trace metal accumulation, idiosyncrasies in the biology of the invertebrate (at any taxon level) may intervene to bring about significant and unexpected comparative differences in metal accumulation patterns.


Sign in / Sign up

Export Citation Format

Share Document