Zeta-functions of classical one-dimensional systems

2018 ◽  
Vol 40 (3) ◽  
pp. 612-662
Author(s):  
ALEXANDER ADAM ◽  
ANKE POHL

Over the last few years Pohl (partly jointly with coauthors) has developed dual ‘slow/fast’ transfer operator approaches to automorphic functions, resonances, and Selberg zeta functions for a certain class of hyperbolic surfaces $\unicode[STIX]{x1D6E4}\backslash \mathbb{H}$ with cusps and all finite-dimensional unitary representations $\unicode[STIX]{x1D712}$ of $\unicode[STIX]{x1D6E4}$. The eigenfunctions with eigenvalue 1 of the fast transfer operators determine the zeros of the Selberg zeta function for $(\unicode[STIX]{x1D6E4},\unicode[STIX]{x1D712})$. Further, if $\unicode[STIX]{x1D6E4}$ is cofinite and $\unicode[STIX]{x1D712}$ is the trivial one-dimensional representation then highly regular eigenfunctions with eigenvalue 1 of the slow transfer operators characterize Maass cusp forms for $\unicode[STIX]{x1D6E4}$. Conjecturally, this characterization extends to more general automorphic functions as well as to residues at resonances. In this article we study, without relying on Selberg theory, the relation between the eigenspaces of these two types of transfer operators for any Hecke triangle surface $\unicode[STIX]{x1D6E4}\backslash \mathbb{H}$ of finite or infinite area and any finite-dimensional unitary representation $\unicode[STIX]{x1D712}$ of the Hecke triangle group $\unicode[STIX]{x1D6E4}$. In particular, we provide explicit isomorphisms between relevant subspaces. This solves a conjecture by Möller and Pohl, characterizes some of the zeros of the Selberg zeta functions independently of the Selberg trace formula, and supports the previously mentioned conjectures.


1983 ◽  
Vol 35 (4) ◽  
pp. 674-686
Author(s):  
Neal Koblitz

Functions onR(or onR/Z, orQ/Z, or the interval (0,1)) which satisfy the identity1.1for positive integersmand fixed complexs,appear in several branches of mathematics (see [8], p. 65-68). They have recently been studied systematically by Kubert [6] and Milnor [12]. Milnor showed that for each complexsthere is a one-dimensional space of even functions and a one-dimensional space of odd functions which satisfy (1.1). These functions can be expressed in terms of either the Hurwitz partial zeta-function or the polylogarithm functions.My purpose is to prove an analogous theorem forp-adic functions. Thep-adic analog is slightly more general; it allows for a Dirichlet characterχ0(m) in front ofms–lin (1.1). The functions satisfying (1.1) turn out to bep-adic “partial DirichletL-functions”, functions of twop-adic variables (x, s) and one character variableχ0which specialize to partial zeta-functions whenχ0is trivial and to Kubota-LeopoldtL-functions whenx= 0.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


Author(s):  
Teruo Someya ◽  
Jinzo Kobayashi

Recent progress in the electron-mirror microscopy (EMM), e.g., an improvement of its resolving power together with an increase of the magnification makes it useful for investigating the ferroelectric domain physics. English has recently observed the domain texture in the surface layer of BaTiO3. The present authors ) have developed a theory by which one can evaluate small one-dimensional electric fields and/or topographic step heights in the crystal surfaces from their EMM pictures. This theory was applied to a quantitative study of the surface pattern of BaTiO3).


Author(s):  
Peter Sterling

The synaptic connections in cat retina that link photoreceptors to ganglion cells have been analyzed quantitatively. Our approach has been to prepare serial, ultrathin sections and photograph en montage at low magnification (˜2000X) in the electron microscope. Six series, 100-300 sections long, have been prepared over the last decade. They derive from different cats but always from the same region of retina, about one degree from the center of the visual axis. The material has been analyzed by reconstructing adjacent neurons in each array and then identifying systematically the synaptic connections between arrays. Most reconstructions were done manually by tracing the outlines of processes in successive sections onto acetate sheets aligned on a cartoonist's jig. The tracings were then digitized, stacked by computer, and printed with the hidden lines removed. The results have provided rather than the usual one-dimensional account of pathways, a three-dimensional account of circuits. From this has emerged insight into the functional architecture.


Author(s):  
A.Q. He ◽  
G.W. Qiao ◽  
J. Zhu ◽  
H.Q. Ye

Since the first discovery of high Tc Bi-Sr-Ca-Cu-O superconductor by Maeda et al, many EM works have been done on it. The results show that the superconducting phases have a type of ordered layer structures similar to that in Y-Ba-Cu-O system formulated in Bi2Sr2Can−1CunO2n+4 (n=1,2,3) (simply called 22(n-1) phase) with lattice constants of a=0.358, b=0.382nm but the length of c being different according to the different value of n in the formulate. Unlike the twin structure observed in the Y-Ba-Cu-O system, there is an incommensurate modulated structure in the superconducting phases of Bi system superconductors. Modulated wavelengths of both 1.3 and 2.7 nm have been observed in the 2212 phase. This communication mainly presents the intergrowth of these two kinds of one-dimensional modulated structures in 2212 phase.


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


Sign in / Sign up

Export Citation Format

Share Document