A neuro-fuzzy-classifier for a knowledge-based glaucoma monitor

Author(s):  
Gudrun Zahlmann ◽  
Matthias Scherf ◽  
Aharon Wegner
2012 ◽  
Vol 58 (4) ◽  
pp. 425-431 ◽  
Author(s):  
D. Selvathi ◽  
N. Emimal ◽  
Henry Selvaraj

Abstract The medical imaging field has grown significantly in recent years and demands high accuracy since it deals with human life. The idea is to reduce human error as much as possible by assisting physicians and radiologists with some automatic techniques. The use of artificial intelligent techniques has shown great potential in this field. Hence, in this paper the neuro fuzzy classifier is applied for the automated characterization of atheromatous plaque to identify the fibrotic, lipidic and calcified tissues in Intravascular Ultrasound images (IVUS) which is designed using sixteen inputs, corresponds to sixteen pixels of instantaneous scanning matrix, one output that tells whether the pixel under consideration is Fibrotic, Lipidic, Calcified or Normal pixel. The classification performance was evaluated in terms of sensitivity, specificity and accuracy and the results confirmed that the proposed system has potential in detecting the respective plaque with the average accuracy of 98.9%.


2018 ◽  
Vol 155 ◽  
pp. 01037
Author(s):  
Sergey Gorbachev ◽  
Vladimir Syryamkin

The article is devoted to research and development of adaptive algorithms for neuro-fuzzy inference when solving multicriteria problems connected with analysis of expert (foresight) data to identify technological breakthroughs and strategic perspectives of scientific, technological and innovative development. The article describes the optimized structuralfunctional scheme of the high-performance adaptive neuro-fuzzy classifier with a logical output, which has such specific features as a block of decision tree-based fuzzy rules and a hybrid algorithm for neural network adaptation of parameters based on the error back-propagation to the root of the decision tree.


Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 269-281 ◽  
Author(s):  
Hima Bindu ◽  
Manjunathachari K.

Purpose This paper aims to develop the Hybrid feature descriptor and probabilistic neuro-fuzzy system for attaining the high accuracy in face recognition system. In recent days, facial recognition (FR) systems play a vital part in several applications such as surveillance, access control and image understanding. Accordingly, various face recognition methods have been developed in the literature, but the applicability of these algorithms is restricted because of unsatisfied accuracy. So, the improvement of face recognition is significantly important for the current trend. Design/methodology/approach This paper proposes a face recognition system through feature extraction and classification. The proposed model extracts the local and the global feature of the image. The local features of the image are extracted using the kernel based scale invariant feature transform (K-SIFT) model and the global features are extracted using the proposed m-Co-HOG model. (Co-HOG: co-occurrence histograms of oriented gradients) The proposed m-Co-HOG model has the properties of the Co-HOG algorithm. The feature vector database contains combined local and the global feature vectors derived using the K-SIFT model and the proposed m-Co-HOG algorithm. This paper proposes a probabilistic neuro-fuzzy classifier system for the finding the identity of the person from the extracted feature vector database. Findings The face images required for the simulation of the proposed work are taken from the CVL database. The simulation considers a total of 114 persons form the CVL database. From the results, it is evident that the proposed model has outperformed the existing models with an improved accuracy of 0.98. The false acceptance rate (FAR) and false rejection rate (FRR) values of the proposed model have a low value of 0.01. Originality/value This paper proposes a face recognition system with proposed m-Co-HOG vector and the hybrid neuro-fuzzy classifier. Feature extraction was based on the proposed m-Co-HOG vector for extracting the global features and the existing K-SIFT model for extracting the local features from the face images. The proposed m-Co-HOG vector utilizes the existing Co-HOG model for feature extraction, along with a new color gradient decomposition method. The major advantage of the proposed m-Co-HOG vector is that it utilizes the color features of the image along with other features during the histogram operation.


Author(s):  
Judith Justin ◽  
Vanithamani R.

In this chapter, a speech enhancement technique is implemented using a neuro-fuzzy classifier. Noisy speech sentences from NOIZEUS and AURORA databases are taken for the study. Feature extraction is implemented through modifications in amplitude magnitude spectrograms. A four class neuro-fuzzy classifier splits the noisy speech samples into noise-only part, signal only part, more noise-less signal part, and more signal-less noise part of the time-frequency units. Appropriate weights are applied in the enhancement phase. The enhanced speech sentence is evaluated using objective measures. An analysis of the performance of the Neuro-Fuzzy 4 (NF 4) classifier is done. A comparison of the performance of the classifier with other conventional techniques is done for various noises at different noise levels. It is observed that the numerical values of the measures obtained are better when compared to the others. An overall comparison of the performance of the NF 4 classifier is done and it is inferred that NF4 outperforms the other techniques in speech enhancement.


Sign in / Sign up

Export Citation Format

Share Document