An overview of the techniques in use for solving the coupled equations of scattering theory

Author(s):  
Don Secrest
1997 ◽  
Vol 161 ◽  
pp. 611-621
Author(s):  
Guillermo A. Lemarchand ◽  
Fernando R. Colomb ◽  
E. Eduardo Hurrell ◽  
Juan Carlos Olalde

AbstractProject META II, a full sky survey for artificial narrow-band signals, has been conducted from one of the two 30-m radiotelescopes of the Instituto Argentino de Radioastronomía (IAR). The search was performed near the 1420 Mhz line of neutral hydrogen, using a 8.4 million channels Fourier spectrometer of 0.05 Hz resolution and 400 kHz instantaneous bandwidth. The observing frequency was corrected both for motions with respect to three astronomical inertial frames, and for the effect of Earths rotation, which provides a characteristic changing signature for narrow-band signals of extraterrestrial origin. Among the 2 × 1013spectral channels analyzed, 29 extra-statistical narrow-band events were found, exceeding the average threshold of 1.7 × 10−23Wm−2. The strongest signals that survive culling for terrestrial interference lie in or near the galactic plane. A description of the project META II observing scheme and results is made as well as the possible interpretation of the results using the Cordes-Lazio-Sagan model based in interstellar scattering theory.


Author(s):  
Z. L. Wang

A new dynamical theory has been developed based on Yoshioka's coupled equations for describing inelastic electron scattering in thin crystals. Compared to existing theories, the primary advantage of this theory is that the incoherent summation of the diffracted intensities contributed by electrons after exciting vast numbers of different excited states has been evaluated before any numerical calculation. An additional advantage is that the phase correlations of atomic vibrations are considered, so that full lattice dynamics can be combined in the phonon scattering calculation. The new theory has been proven to be equivalent to the inelastic multislice theory, and has been applied to calculate energy-filtered diffraction patterns and images formed by phonon, single electron and valence scattered electrons.A calculated diffraction pattern of elastic and phonon scattered electrons for a parallel incident beam case is in agreement with the one observed (Fig. 1), showing thermal diffuse scattering (TDS) streaks and Kikuchi pattern.


Author(s):  
B. B. Chang ◽  
D. F. Parsons

The significance of dynamical scattering effects remains the major question in the structural analysis by electron diffraction of protein crystals preserved in the hydrated state. In the few cases (single layers of purple membrane and 400-600 Å thick catalase crystals examined at 100 kV acceleration voltage) where electron-diffraction patterns were used quantitatively, dynamical scattering effects were considered unimportant on the basis of a comparison with x-ray intensities. The kinematical treatment is usually justified by the thinness of the crystal. A theoretical investigation by Ho et al. using Cowley-Moodie multislice formulation of dynamical scattering theory and cytochrome b5as the test object2 suggests that kinematical analysis of electron diffraction data with 100-keV electrons would not likely be valid for specimen thickness of 300 Å or more. We have chosen to work with electron diffraction patterns obtained from actual wet protein crystals (rat hemoglobin crystals of thickness range 1000 to 2500 Å) at 200 and 1000 kV and to analyze these for dynamical effects.


1995 ◽  
Vol 5 (7) ◽  
pp. 1017-1033 ◽  
Author(s):  
S. A. Patlazhan ◽  
P. Navard

Sign in / Sign up

Export Citation Format

Share Document