Dynamical Scattering in Electron Diffraction of wet Protein Crystals

Author(s):  
B. B. Chang ◽  
D. F. Parsons

The significance of dynamical scattering effects remains the major question in the structural analysis by electron diffraction of protein crystals preserved in the hydrated state. In the few cases (single layers of purple membrane and 400-600 Å thick catalase crystals examined at 100 kV acceleration voltage) where electron-diffraction patterns were used quantitatively, dynamical scattering effects were considered unimportant on the basis of a comparison with x-ray intensities. The kinematical treatment is usually justified by the thinness of the crystal. A theoretical investigation by Ho et al. using Cowley-Moodie multislice formulation of dynamical scattering theory and cytochrome b5as the test object2 suggests that kinematical analysis of electron diffraction data with 100-keV electrons would not likely be valid for specimen thickness of 300 Å or more. We have chosen to work with electron diffraction patterns obtained from actual wet protein crystals (rat hemoglobin crystals of thickness range 1000 to 2500 Å) at 200 and 1000 kV and to analyze these for dynamical effects.

2014 ◽  
Vol 47 (1) ◽  
pp. 215-221 ◽  
Author(s):  
Devinder Singh ◽  
Yifeng Yun ◽  
Wei Wan ◽  
Benjamin Grushko ◽  
Xiaodong Zou ◽  
...  

Electron diffraction is a complementary technique to single-crystal X-ray diffraction and powder X-ray diffraction for structure solution of unknown crystals. Crystals too small to be studied by single-crystal X-ray diffraction or too complex to be solved by powder X-ray diffraction can be studied by electron diffraction. The main drawbacks of electron diffraction have been the difficulties in collecting complete three-dimensional electron diffraction data by conventional electron diffraction methods and the very time-consuming data collection. In addition, the intensities of electron diffraction suffer from dynamical scattering. Recently, a new electron diffraction method, rotation electron diffraction (RED), was developed, which can overcome the drawbacks and reduce dynamical effects. A complete three-dimensional electron diffraction data set can be collected from a sub-micrometre-sized single crystal in less than 2 h. Here the RED method is applied forab initiostructure determination of an unknown complex intermetallic phase, the pseudo-decagonal (PD) quasicrystal approximant Al37.0(Co,Ni)15.5, denoted as PD2. RED shows that the crystal is F-centered, witha= 46.4,b= 64.6,c= 8.2 Å. However, as with other approximants in the PD series, the reflections with oddlindices are much weaker than those withleven, so it was decided to first solve the PD2 structure in the smaller, primitive unit cell. The basic structure of PD2 with unit-cell parametersa= 23.2,b= 32.3,c= 4.1 Å and space groupPnmmhas been solved in the present study. The structure withc= 8.2 Å will be taken up in the near future. The basic structure contains 55 unique atoms (17 Co/Ni and 38 Al) and is one of the most complex structures solved by electron diffraction. PD2 is built of characteristic 2 nm wheel clusters with fivefold rotational symmetry, which agrees with results from high-resolution electron microscopy images. Simulated electron diffraction patterns for the structure model are in good agreement with the experimental electron diffraction patterns obtained by RED.


2001 ◽  
Vol 7 (S2) ◽  
pp. 914-915
Author(s):  
C. Koch ◽  
J.C.H. Spence

Recently several different methods have been proposed to reconstruct the projected crystal potential from electron diffraction patterns. These methods envolve either diffraction patterns at many different orientations (as many orientations as beams in the pattern) and/or images, which makes their experimental realization difficult. We propose an entirely new method for reconstructing the projected crystal potential from fully dynamical [including absorption and multiple scattering effects to all orders] diffraction patterns from only a single crystal orientation and no image at all. Knowledge of the specimen thickness is not necessary. However, it requires diffraction patterns at many different accelarating voltages, which is a parameter that can easily be varied (within a certain range) in most modern electron microscopes. Since the intensities in the electron diffraction pattern are not affected by lens abberations this method is capable of reconstructing the projected potential with a resolution far better than that of any method using HRTEM images.


Author(s):  
T. Ruiz ◽  
R. Diaz ◽  
J-L. Ranck ◽  
D.L.D. Caspar ◽  
D.J. DeRosier

Electron microscopy has advantages over X-ray diffraction for the study of helical structures. For X-ray studies, one needs large well oriented samples which are difficult to obtain. Only one helical structure, TMV, has been solved by conventional X-ray analysis using multiple isomorphous replacement. In contrast, one requires single particles or small rafts for studies by electron microscopy. We are attempting to use a combination of imaging and electron diffraction data to analyze helical structures at 9-10 Å resolution in order to visualize α-helices. To obtain electron diffraction patterns we produced well-ordered domains (∽ 1-3 μm in diameter) for diffraction work. Several methods succeeded in aligning helical particles : the lipid monolayer technique, mica sandwiching and unidirectional blotting. The lipid monolayer technique proved to be the best for high resolution work. The three samples under study (flagellar filaments from Salmonella typhimurium, TMV and TMV stacked disk protein aggregate) gave electron diffraction patterns out to ∽10 Å resolution.


Author(s):  
Christoph Burmester ◽  
Kenneth C. Holmes ◽  
Rasmus R. Schröder

Electron crystallography of 2D protein crystals can yield models with atomic resolution by taking Fourier amplitudes from electron diffraction and phase information from processed images. Imaging at atomic resolution is more difficult than the recording of corresponding electron diffraction patterns. Therefore attempts have been made to recover phase information from diffraction data from 2-D and 3-D crystals by the method of isomorphous replacement using heavy atom labelled protein crystals. These experiments, however, have so far not produced usable phase information, partly because of the large experimental error in the spot intensities. Here we present electron diffraction data obtained from frozen hydrated 3-D protein crystals with an energy-filter microscope and a specially constructed Image Plate scanner which are of considerably better crystallographic quality (as evidenced in much smaller values for the crystallographic R-factors Rsym and Rmerge) than those reported before. The quality of this data shows that the method of isomorphous replacement could indeed be used for phase determination for diffraction data obtained from 3-D microcrystals by electron diffraction.


2013 ◽  
Vol 69 (7) ◽  
pp. 1223-1230 ◽  
Author(s):  
Igor Nederlof ◽  
Eric van Genderen ◽  
Yao-Wang Li ◽  
Jan Pieter Abrahams

When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e− Å−2), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLMandSCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins.


2001 ◽  
Vol 7 (5) ◽  
pp. 407-417
Author(s):  
Kenneth H. Downing ◽  
Huilin Li

AbstractMany of the techniques that have been developed in X-ray crystallography are being applied in electron crystallographic studies of proteins. Electron crystallography has the advantage of measuring structure factor phases directly from high resolution images with an accuracy substantially higher than is common in X-ray crystallography. However, electron diffraction amplitudes are often not as precise as those obtained in X-ray work. We discuss here some approaches to maximizing the reliability of the diffraction amplitudes through choice of exposure and data processing schemes. With accurate measurement of diffraction data, Fourier difference methods can be used in electron crystallographic studies of small, localized changes of proteins that exist in two-dimensional crystals. The mathematical basis for the power of these methods in detecting small changes is reviewed. We then discuss several issues related to optimizing the quality of the diffraction data and derive an expression for the best exposure for recording diffraction patterns. An application of Fourier difference maps in localizing drug binding sites on the protein tubulin is discussed.


Author(s):  
Christoph Burmester ◽  
Kenneth C. Holmes ◽  
Rasmus R. Schröder

Electron crystallography of 2D protein crystals can yield models with atomic resolution by taking Fourier amplitudes from electron diffraction and phase information from processed images. Imaging at atomic resolution is more difficult than the recording of corresponding high resolution electron diffraction patterns. Therefore attempts have been made to retrieve phase information from diffraction from heavy atom labelled protein crystals. The expected differences between native and labelled crystals are small, therefore a high experimental accuracy is necessary. This is achieved by the use of energy filter TEM and image plates, as dicussed in. Here we present electron diffraction data obtained from frozen hydrated 3D protein crystals with an energy filter microspcope and a specially designed image plate scanner. Data were recorded for the native crystal as well as for two different heavy atom derivatives. Differences between the native and the derivate forms can be detected and are significant.Electron diffraction patterns from frozen hydrated catalase crystals were recorded on an EFTEM Zeiss 912 Ω (120kV, zero loss mode, energy width ΔE=10eV, electron dose 5 e-/A2) using image plates and a quasi confocal scanner readout.


Author(s):  
D J H Cockayne ◽  
D R McKenzie

The study of amorphous and polycrystalline materials by obtaining radial density functions G(r) from X-ray or neutron diffraction patterns is a well-developed technique. We have developed a method for carrying out the same technique using electron diffraction in a standard TEM. It has the advantage that studies can be made of thin films, and on regions of specimen too small for X-ray and neutron studies. As well, it can be used to obtain nearest neighbour distances and coordination numbers from the same region of specimen from which HREM, EDS and EELS data is obtained.The reduction of the scattered intensity I(s) (s = 2sinθ/λ ) to the radial density function, G(r), assumes single and elastic scattering. For good resolution in r, data must be collected to high s. Previous work in this field includes pioneering experiments by Grigson and by Graczyk and Moss. In our work, the electron diffraction pattern from an amorphous or polycrystalline thin film is scanned across the entrance aperture to a PEELS fitted to a conventional TEM, using a ramp applied to the post specimen scan coils. The elastically scattered intensity I(s) is obtained by selecting the elastically scattered electrons with the PEELS, and collecting directly into the MCA. Figure 1 shows examples of I(s) collected from two thin ZrN films, one polycrystalline and one amorphous, prepared by evaporation while under nitrogen ion bombardment.


Author(s):  
Karimat El-Sayed

Lead telluride is an important semiconductor of many applications. Many Investigators showed that there are anamolous descripancies in most of the electrophysical properties of PbTe polycrystalline thin films on annealing. X-Ray and electron diffraction studies are being undertaken in the present work in order to explain the cause of this anamolous behaviour.Figures 1-3 show the electron diffraction of the unheated, heated in air at 100°C and heated in air at 250°C respectively of a 300°A polycrystalline PbTe thin film. It can be seen that Fig. 1 is a typical [100] projection of a face centered cubic with unmixed (hkl) indices. Fig. 2 shows the appearance of faint superlattice reflections having mixed (hkl) indices. Fig. 3 shows the disappearance of thf superlattice reflections and the appearance of polycrystalline PbO phase superimposed on the [l00] PbTe diffraction patterns. The mechanism of this three stage process can be explained on structural basis as follows :


1987 ◽  
Vol 52 (1) ◽  
pp. 93-102 ◽  
Author(s):  
Jaroslav Vinš ◽  
Jan Šubrt ◽  
Vladimír Zapletal ◽  
František Hanousek

A method has been worked out for the reproducible preparation of Green Rust substances involving SO42-, Cl-, Br-, and I- anions. The chemical composition of the substances prepared has been followed in dependence on the synthesis conditions. The powder X-ray and electron diffraction patterns and infrared and Moessbauer spectra have been measured and discussed.


Sign in / Sign up

Export Citation Format

Share Document