reference potential
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 23)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Chenqiang Ni ◽  
He Xue ◽  
Shuai Wang ◽  
Xiurong Fang ◽  
Hongliang Yang

The direct current potential drop (DCPD) method is widely used in laboratory environments to monitor the crack initiation and propagation of specimens. In this study, an anti-interference signal processing approach, combining wavelet threshold denoising and a variable current amplitude DCPD signal synthesis technique, was proposed. Adaptive wavelet threshold denoising using Stein’s unbiased risk estimate was applied to the main potential drop signal and the reference potential signal under two different current amplitudes to reduce the interference caused by noise. Thereafter, noise-reduced signals were synthesized to eliminate the time-varying thermal electromotive force. The multiplicative interference signal was eliminated by normalizing the main potential drop signal and the reference potential drop signal. This signal processing approach was applied to the crack growth monitoring data of 316 L stainless steel compact tension specimens in a laboratory environment, and the signal processing results of static cracks and propagation cracks under different load conditions were analyzed. The results showed that the proposed approach can significantly improve the signal-to-noise ratio as well as the accuracy and resolution of the crack growth measurement.


2021 ◽  
Author(s):  
Peter Spichtinger ◽  
Manuel Baumgartner ◽  
Ralf Weigel ◽  
Felix Plöger ◽  
Ulrich Achatz

<p>The potential temperature is a widely used quantity in atmospheric science since it corresponds to the entropy and is conserved for adiabatic changes of dry air. As such, it is routinely employed in applications ranging from atmospheric dynamics to transport modeling. The common formula to compute the potential temperature is based on the assumption of a constant specific heat capacity for the dry air, even though the latter is known to vary with temperature. <br><br>We re-derive the (dry air) potential temperature for a recent temperature-dependent formulation of the specific heat capacity of dry air. The result is expected to provide values which are much closer at the true entropy value (expressed as a temperature) and hence serves as the reference potential temperature. However, its computation is less straightforward compared to the classical one, motivating the development of efficient approximations. Moreover, similarities and differences are discussed between the newly derived reference potential temperature and the classical one based on a constant specific heat capacity. The new reference shows different values and vertical gradients, in particular in the stratosphere and above. Applications of the new reference potential temperature are discussed in the context of common computations in the atmospheric sciences, including the potential vorticity or diabatic heating rates.</p>


2021 ◽  
Author(s):  
Jia-Ning Wang ◽  
Wei Liu ◽  
Pengfei Li ◽  
Yan Mo ◽  
Wenxin Hu ◽  
...  

Although Quantum Mechanical/Molecular Mechanics (QM/MM) methods are now routinely applied to the studies of chemical reactions in condensed phases and enzymatic reactions, they may experience technical difficulties when the reactive region is varying over time. For instance, when the solvent molecules are directly participating in the reaction, the exchange of water molecules between the QM and MM regions may occur on a time scale comparable to the reaction time. To cope with this situation, several adaptive QM/MM schemes have been proposed. However, these methods either add significantly to the computational cost or introduce artificial restraints to the system. In this work, we developed a novel adaptive QM/MM scheme and applied it to a study of a nucleophilic addition reaction. In this scheme, the configuration sampling was performed with a small QM region (without solvent molecules), and the thermodynamic properties under another potential energy function with a larger QM region (with a certain number of solvent molecules and/or different levels of QM theory) are computed via extrapolation using the reference-potential method. Our simulation results show that this adaptive QM/MM scheme is numerically stable, at least for the case studied in this work. Furthermore, this method also offers an inexpensive way to examine the convergence of the QM/MM calculation with respect to the size of the QM region.<br>


2020 ◽  
Vol 20 (24) ◽  
pp. 15585-15616
Author(s):  
Manuel Baumgartner ◽  
Ralf Weigel ◽  
Allan H. Harvey ◽  
Felix Plöger ◽  
Ulrich Achatz ◽  
...  

Abstract. The potential temperature is a widely used quantity in atmospheric science since it is conserved for dry air's adiabatic changes of state. Its definition involves the specific heat capacity of dry air, which is traditionally assumed as constant. However, the literature provides different values of this allegedly constant parameter, which are reviewed and discussed in this study. Furthermore, we derive the potential temperature for a temperature-dependent parameterisation of the specific heat capacity of dry air, thus providing a new reference potential temperature with a more rigorous basis. This new reference shows different values and vertical gradients, in particular in the stratosphere and above, compared to the potential temperature that assumes constant heat capacity. The application of the new reference potential temperature is discussed for computations of the Brunt–Väisälä frequency, Ertel's potential vorticity, diabatic heating rates, and for the vertical sorting of observational data.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
He Xue ◽  
Siyu Gou ◽  
Chenqiang Ni ◽  
Liang Zhang ◽  
Shuai Wang ◽  
...  

Quantitatively monitor the crack growth rate of material stress corrosion cracking (SCC) in an autoclave that simulates a high-temperature and high-pressure water environment, and the direct current potential drop (DCPD) method is the main method. Since the DCPD method tests micro-nano-voltage drop signals, the monitoring signal is weak and easy to be interfered by the environment. To reduce and balance the error caused by the temperature drift and other factors to the monitoring accuracy, it is very important to reasonably select the position of the reference potential probe point. In this study, genetic algorithm (GA), finite element method (FEM), and experimental analysis are used to optimize the position of the reference potential probe point of the compact tensile (CT) sample. Finite element method is used to analyze the electric potential field of the compact tensile sample, a mathematical model of the measurability and crack independence of the reference potential difference are constructed, genetic algorithm is used to find the optimal reference potential difference (RPD) probe point position, and finally, the crack monitoring experiments are performed to evaluate the feasibility of algorithm optimization results. The results indicate that the RPD measured at the current input point and the upper right position of the CT sample can provide the maximum compensation for the potential on both sides of the crack and make the performance of the monitoring signal optimal.


2020 ◽  
Author(s):  
Jia-Ning Wang ◽  
Wei Liu ◽  
Pengfei Li ◽  
Yan Mo ◽  
Wenxin Hu ◽  
...  

Although Quantum Mechanical/Molecular Mechanics (QM/MM) methods are now routinely applied to the studies of chemical reactions in condensed phases and enzymatic reactions, they may confront technical difficulties when the reactive region is varying over time. For instance, when the solvent molecules are participating in the reaction, the exchange of water molecules between the QM and MM regions may occur on a time scale that is comparable to that of the reaction. Several adaptive QM/MM schemes have been proposed to cope with this situation. However, these methods either significantly increase the computational cost or introducing unrealistic restraints to the system. In this work, we developed a novel adaptive QM/MM scheme and applied it to a study of the nucleophilic addition reaction. In this approach, the simulation was performed with a small QM region (without solvent molecules), and the thermodynamic properties under other potential energy functions with larger QM regions (with a different number of solvent molecules and/or different level of QM theory) are computed via extrapolation using the reference-potential method. The results show that this reweighting process is numerically stable, at least for the case studied in this work. Furthermore, this method also offers an inexpensive way to examine the convergence of the QM/MM calculation with respect to the size of the QM region.<br>


2020 ◽  
Author(s):  
Jia-Ning Wang ◽  
Wei Liu ◽  
Pengfei Li ◽  
Yan Mo ◽  
Wenxin Hu ◽  
...  

Although Quantum Mechanical/Molecular Mechanics (QM/MM) methods are now routinely applied to the studies of chemical reactions in condensed phases and enzymatic reactions, they may confront technical difficulties when the reactive region is varying over time. For instance, when the solvent molecules are participating in the reaction, the exchange of water molecules between the QM and MM regions may occur on a time scale that is comparable to that of the reaction. Several adaptive QM/MM schemes have been proposed to cope with this situation. However, these methods either significantly increase the computational cost or introducing unrealistic restraints to the system. In this work, we developed a novel adaptive QM/MM scheme and applied it to a study of the nucleophilic addition reaction. In this approach, the simulation was performed with a small QM region (without solvent molecules), and the thermodynamic properties under other potential energy functions with larger QM regions (with a different number of solvent molecules and/or different level of QM theory) are computed via extrapolation using the reference-potential method. The results show that this reweighting process is numerically stable, at least for the case studied in this work. Furthermore, this method also offers an inexpensive way to examine the convergence of the QM/MM calculation with respect to the size of the QM region.<br>


Sign in / Sign up

Export Citation Format

Share Document