Moduli spaces for polarized algebraic varieties

Author(s):  
Herbert Popp
2012 ◽  
Vol 148 (4) ◽  
pp. 1051-1084 ◽  
Author(s):  
Valery Alexeev ◽  
Rita Pardini

AbstractAn abelian cover is a finite morphism X→Y of varieties which is the quotient map for a generically faithful action of a finite abelian group G. Abelian covers with Y smooth and X normal were studied in [R. Pardini, Abelian covers of algebraic varieties, J. Reine Angew. Math. 417 (1991), 191–213; MR 1103912(92g:14012)]. Here we study the non-normal case, assuming that X and Y are S2 varieties that have at worst normal crossings outside a subset of codimension greater than or equal to two. Special attention is paid to the case of ℤr2-covers of surfaces, which is used in [V. Alexeev and R. Pardini, Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, Preprint (2009), math.AG/arXiv:0901.4431] to construct explicitly compactifications of some components of the moduli space of surfaces of general type.


2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Claudio Bartocci ◽  
Claudio L. S. Rava ◽  
Ugo Bruzzo

AbstractWe define monads for framed torsion-free sheaves on Hirzebruch surfaces and use them to construct moduli spaces for these objects. These moduli spaces are smooth algebraic varieties, and we show that they are fine by constructing a universal monad.


Author(s):  
Richard Eager ◽  
Ingmar Saberi ◽  
Johannes Walcher

AbstractWe consider algebraic varieties canonically associated with any Lie superalgebra, and study them in detail for super-Poincaré algebras of physical interest. They are the locus of nilpotent elements in (the projectivized parity reversal of) the odd part of the algebra. Most of these varieties have appeared in various guises in previous literature, but we study them systematically here, from a new perspective: As the natural moduli spaces parameterizing twists of a super-Poincaré-invariant physical theory. We obtain a classification of all possible twists, as well as a systematic analysis of unbroken symmetry in twisted theories. The natural stratification of the varieties, the identification of strata with twists, and the action of Lorentz and R-symmetry are emphasized. We also include a short and unconventional exposition of the pure spinor superfield formalism, from the perspective of twisting, and demonstrate that it can be applied to construct familiar multiplets in four-dimensional minimally supersymmetric theories. In all dimensions and with any amount of supersymmetry, this technique produces BRST or BV complexes of supersymmetric theories from the Koszul complex of the maximal ideal over the coordinate ring of the nilpotence variety, possibly tensored with any equivariant module over that coordinate ring. In addition, we remark on a natural connection to the Chevalley–Eilenberg complex of the supertranslation algebra, and give two applications related to these ideas: a calculation of Chevalley–Eilenberg cohomology for the (2, 0) algebra in six dimensions, and a degenerate BV complex encoding the type IIB supergravity multiplet.


Author(s):  
Claire Voisin

This book provides an introduction to algebraic cycles on complex algebraic varieties, to the major conjectures relating them to cohomology, and even more precisely to Hodge structures on cohomology. The book is intended for both students and researchers, and not only presents a survey of the geometric methods developed in the last thirty years to understand the famous Bloch-Beilinson conjectures, but also examines recent work by the author. It focuses on two central objects: the diagonal of a variety—and the partial Bloch-Srinivas type decompositions it may have depending on the size of Chow groups—as well as its small diagonal, which is the right object to consider in order to understand the ring structure on Chow groups and cohomology. An exploration of a sampling of recent works by the author looks at the relation, conjectured in general by Bloch and Beilinson, between the coniveau of general complete intersections and their Chow groups and a very particular property satisfied by the Chow ring of K3 surfaces and conjecturally by hyper-Kähler manifolds. In particular, the book delves into arguments originating in Nori's work that have been further developed by others.


These volumes contain the proceedings of the conference held at Aarhus, Oxford and Madrid in September 2016 to mark the seventieth birthday of Nigel Hitchin, one of the world’s foremost geometers and Savilian Professor of Geometry at Oxford. The proceedings contain twenty-nine articles, including three by Fields medallists (Donaldson, Mori and Yau). The articles cover a wide range of topics in geometry and mathematical physics, including the following: Riemannian geometry, geometric analysis, special holonomy, integrable systems, dynamical systems, generalized complex structures, symplectic and Poisson geometry, low-dimensional topology, algebraic geometry, moduli spaces, Higgs bundles, geometric Langlands programme, mirror symmetry and string theory. These volumes will be of interest to researchers and graduate students both in geometry and mathematical physics.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


Author(s):  
Ulrich Görtz ◽  
Xuhua He ◽  
Michael Rapoport

Abstract We investigate qualitative properties of the underlying scheme of Rapoport–Zink formal moduli spaces of p-divisible groups (resp., shtukas). We single out those cases where the dimension of this underlying scheme is zero (resp., those where the dimension is the maximal possible). The model case for the first alternative is the Lubin–Tate moduli space, and the model case for the second alternative is the Drinfeld moduli space. We exhibit a complete list in both cases.


Sign in / Sign up

Export Citation Format

Share Document