TWO-SPHERE PARTITION FUNCTIONS AND K¨AHLER POTENTIALS ON CY MODULI SPACES

Author(s):  
K. ALESHKIN ◽  
A. BELAVIN ◽  
A. LITVINOV
2017 ◽  
Vol 28 (02) ◽  
pp. 1750012
Author(s):  
Norman Do ◽  
Musashi A. Koyama ◽  
Daniel V. Mathews

We consider an elementary, and largely unexplored, combinatorial problem in low-dimensional topology: for a compact surface [Formula: see text], with a finite set of points [Formula: see text] fixed on its boundary, how many configurations of disjoint arcs are there on [Formula: see text] whose boundary is [Formula: see text]? We find that this enumerative problem, counting curves on surfaces, has a rich structure. We show that such curve counts obey an effective recursion, in the general spirit of topological recursion, and exhibit quasi-polynomial behavior. This “elementary curve-counting” is in fact related to a more advanced notion of “curve-counting” from algebraic geometry or symplectic geometry. The asymptotics of this enumerative problem are closely related to the asymptotics of volumes of moduli spaces of curves, and the quasi-polynomials governing the enumerative problem encode intersection numbers on moduli spaces. Among several other results, we show that generating functions and differential forms for these curve counts exhibit structure that is reminiscent of the mathematical physics of free energies, partition functions and quantum curves.


1997 ◽  
Vol 12 (06) ◽  
pp. 381-392 ◽  
Author(s):  
Mitsuko Abe

We derive the partition functions of the Schwarz-type four-dimensional topological half-flat two-form gravity model on K3-surface or T4 up to on-shell one-loop corrections. In this model the bosonic moduli spaces describe an equivalent class of a trio of the Einstein–Kähler forms (the hyper-Kähler forms). The integrand of the partition function is represented by the product of some [Formula: see text]-torsions. [Formula: see text]-torsion is the extension of R-torsion for the de Rham complex to that for the [Formula: see text]-complex of a complex analytic manifold.


2014 ◽  
Vol 26 (09) ◽  
pp. 1430008 ◽  
Author(s):  
Lucio S. Cirio ◽  
Giovanni Landi ◽  
Richard J. Szabo

We elaborate on the quantization of toric varieties by combining techniques from toric geometry, isospectral deformations and noncommutative geometry in braided monoidal categories, and the construction of instantons thereon by combining methods from noncommutative algebraic geometry and a quantized twistor theory. We classify the real structures on a toric noncommutative deformation of the Klein quadric and use this to derive a new noncommutative four-sphere which is the unique deformation compatible with the noncommutative twistor correspondence. We extend the computation of equivariant instanton partition functions to noncommutative gauge theories with both adjoint and fundamental matter fields, finding agreement with the classical results in all instances. We construct moduli spaces of noncommutative vortices from the moduli of invariant instantons, and derive corresponding equivariant partition functions which also agree with those of the classical limit.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Arash Arabi Ardehali ◽  
Junho Hong

Abstract We present a prototype for Wilsonian analysis of asymptotics of supersymmetric partition functions of non-abelian gauge theories. Localization allows expressing such partition functions as an integral over a BPS moduli space. When the limit of interest introduces a scale hierarchy in the problem, asymptotics of the partition function is obtained in the Wilsonian approach by i) decomposing (in some suitable scheme) the BPS moduli space into various patches according to the set of light fields (lighter than the scheme dependent cut-off Λ) they support, ii) localizing the partition function of the effective field theory on each patch (with cut-offs set by the scheme), and iii) summing up the contributions of all patches to obtain the final asymptotic result (which is scheme-independent and accurate as Λ → ∞). Our prototype concerns the Cardy-like asymptotics of the 4d superconformal index, which has been of interest recently for its application to black hole microstate counting in AdS5/CFT4. As a byproduct of our analysis we obtain the most general asymptotic expression for the index of gauge theories in the Cardy-like limit, encompassing and extending all previous results.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
M. Nouman Muteeb

AbstractWe propose expressions for refined open topological string partition function on certain non-compact Calabi Yau 3-folds with topological branes wrapped on the special lagrangian submanifolds. The corresponding web diagrams are partially compact and a lagrangian brane is inserted on one of the external legs. Partial compactification introduces a mass deformation in the corresponding gauge theory. We propose conjectures that equate these open topological string partition functions with the generating function of equivaraint indices on certain quiver moduli spaces. To obtain these conjectures we use the identification of topological string partition functions with equivariant indices on the instanton moduli spaces.


JETP Letters ◽  
2018 ◽  
Vol 108 (10) ◽  
pp. 710-713 ◽  
Author(s):  
K. Aleshkin ◽  
A. Belavin ◽  
A. Litvinov

Author(s):  
Niels Engholm Henriksen ◽  
Flemming Yssing Hansen

This chapter discusses an approximate approach—transition-state theory—to the calculation of rate constants for bimolecular reactions. A reaction coordinate is identified from a normal-mode coordinate analysis of the activated complex, that is, the supermolecule on the saddle-point of the potential energy surface. Motion along this coordinate is treated by classical mechanics and recrossings of the saddle point from the product to the reactant side are neglected, leading to the result of conventional transition-state theory expressed in terms of relevant partition functions. Various alternative derivations are presented. Corrections that incorporate quantum mechanical tunnelling along the reaction coordinate are described. Tunnelling through an Eckart barrier is discussed and the approximate Wigner tunnelling correction factor is derived in the limit of a small degree of tunnelling. It concludes with applications of transition-state theory to, for example, the F + H2 reaction, and comparisons with results based on quasi-classical mechanics as well as exact quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document