On the betti numbers of the milnor fibre of a certain class of hypersurface singularities

Author(s):  
D. van Straten
2003 ◽  
Vol 43 (3-4) ◽  
pp. 235-244 ◽  
Author(s):  
Marilena Crupi ◽  
Rosanna Utano
Keyword(s):  

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Cyril Closset ◽  
Simone Giacomelli ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of ‘trinion’ singularities which exhibit these properties. In Type IIB, they give rise to 4d $$ \mathcal{N} $$ N = 2 SCFTs that we call $$ {D}_p^b $$ D p b (G)-trinions, which are marginal gaugings of three SCFTs with G flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d $$ \mathcal{N} $$ N = 4 theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as ‘ugly’ components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver ‘bad’. We propose a way to redeem the badness of these quivers using a class $$ \mathcal{S} $$ S realization. We also discover new S-dualities between different $$ {D}_p^b $$ D p b (G)-trinions. For instance, a certain E8 gauging of the E8 Minahan-Nemeschansky theory is S-dual to an E8-shaped Lagrangian quiver SCFT.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Giosuè Emanuele Muratore

Abstract The 2-Fano varieties, defined by De Jong and Starr, satisfy some higher-dimensional analogous properties of Fano varieties. We consider (weak) k-Fano varieties and conjecture the polyhedrality of the cone of pseudoeffective k-cycles for those varieties, in analogy with the case k = 1. Then we calculate some Betti numbers of a large class of k-Fano varieties to prove some special case of the conjecture. In particular, the conjecture is true for all 2-Fano varieties of index at least n − 2, and we complete the classification of weak 2-Fano varieties answering Questions 39 and 41 in [2].


Author(s):  
Yongqiang Liu ◽  
Laurentiu Maxim ◽  
Botong Wang

Abstract We use the non-proper Morse theory of Palais–Smale to investigate the topology of smooth closed subvarieties of complex semi-abelian varieties and that of their infinite cyclic covers. As main applications, we obtain the finite generation (except in the middle degree) of the corresponding integral Alexander modules as well as the signed Euler characteristic property and generic vanishing for rank-one local systems on such subvarieties. Furthermore, we give a more conceptual (topological) interpretation of the signed Euler characteristic property in terms of vanishing of Novikov homology. As a byproduct, we prove a generic vanishing result for the $L^2$-Betti numbers of very affine manifolds. Our methods also recast June Huh’s extension of Varchenko’s conjecture to very affine manifolds and provide a generalization of this result in the context of smooth closed sub-varieties of semi-abelian varieties.


2005 ◽  
Vol 15 (05n06) ◽  
pp. 1169-1188 ◽  
Author(s):  
ROMAN SAUER

There are notions of L2-Betti numbers for discrete groups (Cheeger–Gromov, Lück), for type II1-factors (recent work of Connes-Shlyakhtenko) and for countable standard equivalence relations (Gaboriau). Whereas the first two are algebraically defined using Lück's dimension theory, Gaboriau's definition of the latter is inspired by the work of Cheeger and Gromov. In this work we give a definition of L2-Betti numbers of discrete measured groupoids that is based on Lück's dimension theory, thereby encompassing the cases of groups, equivalence relations and holonomy groupoids with an invariant measure for a complete transversal. We show that with our definition, like with Gaboriau's, the L2-Betti numbers [Formula: see text] of a countable group G coincide with the L2-Betti numbers [Formula: see text] of the orbit equivalence relation [Formula: see text] of a free action of G on a probability space. This yields a new proof of the fact the L2-Betti numbers of groups with orbit equivalent actions coincide.


2006 ◽  
Vol 49 (11) ◽  
pp. 1576-1592 ◽  
Author(s):  
Kepao Lin ◽  
Zhenhan Tu ◽  
Stephen S. T. Yau

2013 ◽  
Vol 94 (3-4) ◽  
pp. 351-363 ◽  
Author(s):  
I. Yu. Limonchenko

Sign in / Sign up

Export Citation Format

Share Document