The Dirichlet problem in a bounded domain

Author(s):  
Jan Chabrowski
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xavier Cabré ◽  
Pietro Miraglio ◽  
Manel Sanchón

AbstractWe consider the equation {-\Delta_{p}u=f(u)} in a smooth bounded domain of {\mathbb{R}^{n}}, where {\Delta_{p}} is the p-Laplace operator. Explicit examples of unbounded stable energy solutions are known if {n\geq p+\frac{4p}{p-1}}. Instead, when {n<p+\frac{4p}{p-1}}, stable solutions have been proved to be bounded only in the radial case or under strong assumptions on f. In this article we solve a long-standing open problem: we prove an interior {C^{\alpha}} bound for stable solutions which holds for every nonnegative {f\in C^{1}} whenever {p\geq 2} and the optimal condition {n<p+\frac{4p}{p-1}} holds. When {p\in(1,2)}, we obtain the same result under the nonsharp assumption {n<5p}. These interior estimates lead to the boundedness of stable and extremal solutions to the associated Dirichlet problem when the domain is strictly convex. Our work extends to the p-Laplacian some of the recent results of Figalli, Ros-Oton, Serra, and the first author for the classical Laplacian, which have established the regularity of stable solutions when {p=2} in the optimal range {n<10}.


2013 ◽  
Vol 11 (03) ◽  
pp. 1350005 ◽  
Author(s):  
ZHONG TAN ◽  
FEI FANG

Let Ω be a bounded domain in RNwith smooth boundary ∂Ω. In this paper, the following Dirichlet problem for N-Laplacian equations (N > 1) are considered: [Formula: see text] We assume that the nonlinearity f(x, t) is sub-exponential growth. In fact, we will prove the mapping f(x, ⋅): LA(Ω) ↦ LÃ(Ω) is continuous, where LA(Ω) and LÃ(Ω) are Orlicz spaces. Applying this result, the compactness conditions would be obtained. Hence, we may use Morse theory to obtain existence of nontrivial solutions for problem (N).


2012 ◽  
Vol 55 (2) ◽  
pp. 291-309 ◽  
Author(s):  
Claudianor O. Alves ◽  
Giovany M. Figueiredo ◽  
Uberlandio B. Severo

AbstractWe establish the multiplicity of positive weak solutions for the quasilinear Dirichlet problem−Lpu+ |u|p−2u=h(u)in Ωλ,u= 0 on ∂Ωλ, where Ωλ= λΩ, Ω is a bounded domain in ℝN, λ is a positive parameter,Lpu≐ Δpu+ Δp(u2)uand the nonlinear termh(u) has subcritical growth. We use minimax methods together with the Lyusternik–Schnirelmann category theory to get multiplicity of positive solutions.


2014 ◽  
Vol 16 (01) ◽  
pp. 1350020 ◽  
Author(s):  
TERESA D'APRILE ◽  
ANGELA PISTOIA

We study the existence of sign-changing multiple interior spike solutions for the following Dirichlet problem [Formula: see text] where Ω is a smooth and bounded domain of ℝN, ε is a small positive parameter, f is a superlinear, subcritical and odd nonlinearity. In particular we prove that if Ω has a plane of symmetry and its intersection with the plane is a two-dimensional strictly convex domain, then, provided that k is even and sufficiently large, a k-peak solution exists with alternate sign peaks aligned along a closed curve near a geodesic of ∂Ω.


Author(s):  
Vladimir Bobkov ◽  
Mieko Tanaka

We study the zero Dirichlet problem for the equation [Formula: see text] in a bounded domain [Formula: see text], with [Formula: see text]. We investigate the relation between two critical curves on the [Formula: see text]-plane corresponding to the threshold of existence of special classes of positive solutions. In particular, in certain neighborhoods of the point [Formula: see text], where [Formula: see text] is the first eigenfunction of the [Formula: see text]-Laplacian, we show the existence of two and, which is rather unexpected, three distinct positive solutions, depending on a relation between the exponents [Formula: see text] and [Formula: see text].


2016 ◽  
Vol 8 (1) ◽  
pp. 52-72 ◽  
Author(s):  
Tuhina Mukherjee ◽  
Konijeti Sreenadh

Abstract In this article, we study the following fractional p-Laplacian equation with critical growth and singular non-linearity: (-\Delta_{p})^{s}u=\lambda u^{-q}+u^{\alpha},\quad u>0\quad\text{in }\Omega,% \qquad u=0\quad\text{in }\mathbb{R}^{n}\setminus\Omega, where Ω is a bounded domain in {\mathbb{R}^{n}} with smooth boundary {\partial\Omega} , {n>sp} , {s\in(0,1)} , {\lambda>0} , {0<q\leq 1} and {1<p<\alpha+1\leq p^{*}_{s}} . We use variational methods to show the existence and multiplicity of positive solutions of the above problem with respect to the parameter λ.


Author(s):  
Gianni Dal Maso ◽  
Annalisa Malusa

Given an elliptic operator L on a bounded domain Ω ⊆ Rn, and a positive Radon measure μ on Ω, not charging polar sets, we discuss an explicit approximation procedure which leads to a sequence of domains Ωh ⊇ Ω with the following property: for every f ∈ H−1(Ω) the sequence uh of the solutions of the Dirichlet problems Luh = f in Ωh, uh = 0 on ∂Ωh, extended to 0 in Ω\Ωh, converges to the solution of the “relaxed Dirichlet problem” Lu + μu = f in Ω, u = 0 on ∂Ω.


2010 ◽  
Vol 52 (3) ◽  
pp. 505-516 ◽  
Author(s):  
XIANLING FAN

AbstractConsider the p(x)-Laplacian–Dirichlet problem with sign-changing non-linearity of the form where Ω ⊂ ℝN is a bounded domain, p ∈ C0(Ω) and infx∈Ωp(x) > 1, m ∈ L∞(Ω) is non-negative, f : ℝ → ℝ is continuous and f(0) > 0, the coefficient a ∈ L∞(Ω) is sign-changing in (Ω). We give some sufficient conditions to assure the existence of a positive solution to the problem for sufficiently small λ > 0. Our results extend the corresponding results established in the p-Laplacian case to the p(x)-Laplacian case.


Sign in / Sign up

Export Citation Format

Share Document