On Lie algebras of vectorfields, Lie algebras of differential operators and (nonlinear) filtering

Author(s):  
Michiel Hazewinskel
1997 ◽  
Vol 40 (6) ◽  
pp. 525-530 ◽  
Author(s):  
I. V. Shirokov

2000 ◽  
Vol 11 (04) ◽  
pp. 523-551 ◽  
Author(s):  
VINAY KATHOTIA

We relate a universal formula for the deformation quantization of Poisson structures (⋆-products) on ℝd proposed by Maxim Kontsevich to the Campbell–Baker–Hausdorff (CBH) formula. We show that Kontsevich's formula can be viewed as exp (P) where P is a bi-differential operator that is a deformation of the given Poisson structure. For linear Poisson structures (duals of Lie algebras) his product takes the form exp (C+L) where exp (C) is the ⋆-product given by the universal enveloping algebra via symmetrization, essentially the CBH formula. This is established by showing that the two products are identical on duals of nilpotent Lie algebras where the operator L vanishes. This completely determines part of Kontsevich's formula and leads to a new scheme for computing the CBH formula. The main tool is a graphical analysis for bi-differential operators and the computation of certain iterated integrals that yield the Bernoulli numbers.


Author(s):  
P. Krishnaprasad ◽  
Steven Marcus ◽  
Michiel Hazewinkel

1997 ◽  
Vol 12 (22) ◽  
pp. 1589-1595 ◽  
Author(s):  
E. H. El Kinani

The class of pseudo-differential operators Lie algebra [Formula: see text] on the quantum plane [Formula: see text] is introduced. The embedding of certain infinite-dimensional Lie algebras which occur in the physics literature in [Formula: see text] is discussed as well as the correspondence between [Formula: see text] and [Formula: see text] as k→+∞ is examined.


2006 ◽  
Vol 03 (04) ◽  
pp. 667-696 ◽  
Author(s):  
SOFIANE BOUARROUDJ

Let M be either a projective manifold (M, Π) or a pseudo-Riemannian manifold (M, g). We extend, intrinsically, the projective/conformal Schwarzian derivatives we have introduced recently, to the space of differential operators acting on symmetric contravariant tensor fields of any degree on M. As operators, we show that the projective/conformal Schwarzian derivatives depend only on the projective connection Π and the conformal class of the metric [g], respectively. Furthermore, we compute the first cohomology group of Vect(M) with coefficients in the space of symmetric contravariant tensor fields valued in the space of δ-densities, and we compute the corresponding sl(n + 1, ℝ)-relative cohomology group.


1999 ◽  
Vol 32 (15) ◽  
pp. 2791-2803 ◽  
Author(s):  
J Beckers ◽  
Y Brihaye ◽  
N Debergh

2017 ◽  
Vol 14 (02) ◽  
pp. 1750022
Author(s):  
Ben Fraj Nizar ◽  
Meher Abdaoui ◽  
Raouafi Hamza

We consider the [Formula: see text]-dimensional real superspace [Formula: see text] endowed with its standard contact structure defined by the 1-form [Formula: see text]. The conformal Lie superalgebra [Formula: see text] acts on [Formula: see text] as the Lie superalgebra of contact vector fields; it contains the Möbius superalgebra [Formula: see text]. We classify [Formula: see text]-invariant linear differential operators from [Formula: see text] to [Formula: see text] vanishing on [Formula: see text], where [Formula: see text] is the superspace of bilinear differential operators between the superspaces of weighted densities. This result allows us to compute the first differential [Formula: see text]-relative cohomology of [Formula: see text] with coefficients in [Formula: see text]. This work is the simplest superization of a result by Bouarroudj [Cohomology of the vector fields Lie algebras on [Formula: see text] acting on bilinear differential operators, Int. J. Geom. Methods Mod. Phys. 2(1) (2005) 23–40].


Sign in / Sign up

Export Citation Format

Share Document