scholarly journals Aspects of Hyperscaling Violating geometries at finite cutoff

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Salomeh Khoeini-Moghaddam ◽  
Farzad Omidi ◽  
Chandrima Paul

Abstract Recently, it was proposed that a $$ T\overline{T} $$ T T ¯ deformed CFT is dual to a gravity theory in an asymptotically AdS spacetime at finite radial cutoff. Motivated by this proposal, we explore some aspects of Hyperscaling Violating geometries at finite cutoff and zero temperature. We study holographic entanglement entropy, mutual information (HMI) and entanglement wedge cross section (EWCS) for entangling regions in the shape of strips. It is observed that the HMI shows interesting features in comparison to the very small cutoff case: it is a decreasing function of the cutoff. It is finite when the distance between the two entangling regions goes to zero. The location of its phase transition also depends on the cutoff, and decreases by increasing the cutoff. On the other hand, the EWCS is a decreasing function of the cutoff. It does not show a discontinuous phase transition when the HMI undergoes a first-order phase transition. However, its concavity changes. Moreover, it is finite when the distance between the two strips goes to zero. Furthermore, it satisfies the bound EW ≥ $$ \frac{I}{2} $$ I 2 for all values of the cutoff.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xian-Ming Liu ◽  
Hong-Bo Shao ◽  
Xiao-Xiong Zeng

Phase transition of AdS black holes in Lorentz breaking massive gravity has been studied in the framework of holography. We find that there is a first-order phase transition (FPT) and second-order phase transition (SPT) both in Bekenstein-Hawking entropy- (BHE-) temperature plane and in holographic entanglement entropy- (HEE-) temperature plane. Furthermore, for the FPT, the equal area law is checked and for the SPT, the critical exponent of the heat capacity is also computed. Our results confirm that the phase structure of HEE is similar to that of BHE in Lorentz breaking massive gravity, which implies that HEE and BHE have some potential underlying relationship.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xiao-Xiong Zeng ◽  
Li-Fang Li

From the viewpoint of holography, the phase structure of a 5-dimensional Reissner-Nordström-AdS black hole is probed by the two-point correlation function, Wilson loop, and entanglement entropy. As the case of thermal entropy, we find for all the probes that the black hole undergoes a Hawking-Page phase transition, a first-order phase transition, and a second-order phase transition successively before it reaches a stable phase. In addition, for these probes, we find that the equal area law for the first-order phase transition is valid always and the critical exponent of the heat capacity for the second-order phase transition coincides with that of the mean field theory regardless of the size of the boundary region.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Danny Marfatia ◽  
Po-Yan Tseng

Abstract We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured dark matter relic abundance via (1) bubble filtering, and (2) inflation and reheating, and show that gravitational waves from these mechanisms are detectable at future interferometers.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Aleksandr Azatov ◽  
Miguel Vanvlasselaer ◽  
Wen Yin

Abstract In this paper we present a novel mechanism for producing the observed Dark Matter (DM) relic abundance during the First Order Phase Transition (FOPT) in the early universe. We show that the bubble expansion with ultra-relativistic velocities can lead to the abundance of DM particles with masses much larger than the scale of the transition. We study this non-thermal production mechanism in the context of a generic phase transition and the electroweak phase transition. The application of the mechanism to the Higgs portal DM as well as the signal in the Stochastic Gravitational Background are discussed.


Nano Letters ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 1282-1288 ◽  
Author(s):  
Kaikai Li ◽  
Xiaoye Zhou ◽  
Anmin Nie ◽  
Sheng Sun ◽  
Yan-Bing He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document