scholarly journals Strong Cosmic Censorship in higher-dimensional Reissner-Nordström-de Sitter spacetime

2019 ◽  
Vol 2019 (3) ◽  
Author(s):  
Hang Liu ◽  
Ziyu Tang ◽  
Kyriakos Destounis ◽  
Bin Wang ◽  
Eleftherios Papantonopoulos ◽  
...  
2002 ◽  
Vol 17 (20) ◽  
pp. 2747-2747
Author(s):  
A. BEESHAM

The singularity theorems of general relativity predict that gravitational collapse finally ends up in a spacetime singularity1. The cosmic censorship hypothesis (CCH) states that such a singularity is covered by an event horizon2. Despite much effort, there is no rigorous formulation or proof of the CCH. In view of this, examples that appear to violate the CCH and lead to naked singularities, in which non-spacelike curves can emerge, rather than black holes, are important to shed more light on the issue. We have studied several collapse scenarios which can lead to both situations3. In the case of the Vaidya-de Sitter spacetime4, we have shown that the naked singularities that arise are of the strong curvature type. Both types of singularities can also arise in higher dimensional Vaidya and Tolman-Bondi spacetimes, but black holes are favoured in some sense by the higher dimensions. The charged Vaidya-de Sitter spacetime also exhibits both types of singularities5.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Boxuan Ge ◽  
Jie Jiang ◽  
Bin Wang ◽  
Hongbao Zhang ◽  
Zhen Zhong

2005 ◽  
Vol 20 (24) ◽  
pp. 1823-1829 ◽  
Author(s):  
LI XIANG ◽  
YOU-GEN SHEN

In this paper two consequences of the generalized uncertainty principle (GUP) are discussed in a heuristic manner. Both could be regarded as the evidences that prefer the cosmic censorship hypothesis (CCH). The first one is that the second law tends to decline the massless charged particles if the effects of the GUP on the thermodynamics of a de Sitter spacetime are considered. This weakens the threat to the horizon of an extreme charged black hole. The second one is that the uv/ir correspondence provides a constraint on the relation between the energy and the size of a system, which is incompatible to the naked singularities.


2008 ◽  
Vol 23 (14n15) ◽  
pp. 2169-2171 ◽  
Author(s):  
YUKINORI YASUI

This paper gives a brief review of recent results on higher dimensional black hole solutions. It is shown that the D-dimensional Kerr-NUT-de Sitter spacetime constructed by Chen-Lü-Pope is the only spacetime admitting a rank-2 conformal Killing-Yano tensor with a certain symmetry.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Meng-Sen Ma ◽  
Li-Chun Zhang ◽  
Hui-Hua Zhao ◽  
Ren Zhao

We study the phase transition of charged Gauss-Bonnet-de Sitter (GB-dS) black hole. For black holes in de Sitter spacetime, there is not only black hole horizon, but also cosmological horizon. The thermodynamic quantities on both horizons satisfy the first law of the black hole thermodynamics, respectively; moreover, there are additional connections between them. Using the effective temperature approach, we obtained the effective thermodynamic quantities of charged GB-dS black hole. According to Ehrenfest classification, we calculate some response functions and plot their figures, from which one can see that the spacetime undergoes a second-order phase transition at the critical point. It is shown that the critical values of effective temperature and pressure decrease with the increase of the value of GB parameterα.


2012 ◽  
Vol 18 ◽  
pp. 164-173 ◽  
Author(s):  
ARAM A. SAHARIAN

Vacuum energy density and stresses are investigated for a scalar field in de Sitter spacetime with an arbitrary number of toroidally compactified spatial dimensions and in anti-de Sitter spacetime with two parallel branes. On the branes the field obeys the Robin boundary conditions. The behavior of the vacuum expectation values is discussed in various asymptotic regions of the parameters. Applications are given to Randall-Sundrum type braneworlds.


Sign in / Sign up

Export Citation Format

Share Document