cosmological horizon
Recently Published Documents


TOTAL DOCUMENTS

74
(FIVE YEARS 23)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
Diego Fernández-Silvestre ◽  
Joshua Foo ◽  
Michael R.R Good

Abstract The Schwarzschild-de Sitter (SdS) metric is the simplest spacetime solution in general relativity with both a black hole event horizon and a cosmological event horizon. Since the Schwarzschild metric is the most simple solution of Einstein's equations with spherical symmetry and the de Sitter metric is the most simple solution of Einstein's equations with a positive cosmological constant, the combination in the SdS metric defines an appropriate background geometry for semi-classical investigation of Hawking radiation with respect to past and future horizons. Generally, the black hole temperature is larger than that of the cosmological horizon, so there is heat flow from the smaller black hole horizon to the larger cosmological horizon, despite questions concerning the definition of the relative temperature of the black hole without a measurement by an observer sitting in an asymptotically flat spacetime. Here we investigate the accelerating boundary correspondence (ABC) of the radiation in SdS spacetime without such a problem. We have solved for the boundary dynamics, energy flux and asymptotic particle spectrum. The distribution of particles is globally non-thermal while asymptotically the radiation reaches equilibrium.


Author(s):  
Abhishek Mathur ◽  
Sumati Surya ◽  
Nomaan X

Abstract We calculate Sorkin's manifestly covariant, spacetime entanglement entropy (SSEE) for a massive and massless minimally coupled free Gaussian scalar field for the de Sitter horizon and Schwarzschild de Sitter horizons, respectively, in d > 2. In de Sitter spacetime we restrict the Bunch-Davies vacuum in the conformal patch to the static patch to obtain a mixed state. The finiteness of the spatial L2 norm in the static patch implies that the SSEE is well defined for each mode. We find that for this mixed state it is independent of the effective mass of the scalar field and matches results obtained by Higuchi and Yamamoto, where, a spatial density matrix was used to calculate the horizon entanglement entropy. Using a cut-off in the angular modes we show that the SSEE is proportional to the area of the de Sitter cosmological horizon. Our analysis can be carried over to the black hole and cosmological horizon in Schwarzschild de Sitter spacetime, which also has finite spatial L2 norm in the static regions. Although the explicit form of the modes is not known in this case, we use appropriate boundary conditions for a massless minimally coupled scalar field, to find the mode-wise SSEE for both the black hole and de Sitter cosmological horizons. As in the de Sitter calculation we see that SSEE is proportional to the horizon area in each case after taking a cut-off in the angular modes.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
L. Aalsma ◽  
A. Cole ◽  
E. Morvan ◽  
J. P. van der Schaar ◽  
G. Shiu

Abstract We discuss some implications of recent progress in understanding the black hole information paradox for complementarity in de Sitter space. Extending recent work by two of the authors, we describe a bulk procedure that allows information expelled through the cosmological horizon to be received by an antipodal observer. Generically, this information transfer takes a scrambling time t = H−1 log(SdS). We emphasize that this procedure relies crucially on selection of the Bunch-Davies vacuum state, interpreted as the thermofield double state that maximally entangles two antipodal static patches. The procedure also requires the presence of an (entangled) energy reservoir, created by the collection of Hawking modes from the cosmological horizon. We show how this procedure avoids a cloning paradox and comment on its implications.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lars Aalsma ◽  
Watse Sybesma

Abstract Recent works have revealed that quantum extremal islands can contribute to the fine-grained entropy of black hole radiation reproducing the unitary Page curve. In this paper, we use these results to assess if an observer in de Sitter space can decode information hidden behind their cosmological horizon. By computing the fine-grained entropy of the Gibbons-Hawking radiation in a region where gravity is weak we find that this is possible, but the observer’s curiosity comes at a price. At the same time the island appears, which happens much earlier than the Page time, a singularity forms which the observer will eventually hit. We arrive at this conclusion by studying de Sitter space in Jackiw-Teitelboim gravity. We emphasize the role of the observer collecting radiation, breaking the thermal equilibrium studied so far in the literature. By analytically solving for the backreacted geometry we show how an island appears in this out-of-equilibrium state.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Sajal Mukherjee ◽  
Naresh Dadhich

AbstractIt is known that NUT solution has many interesting features and pathologies like being non-singular and having closed timelike curves. It turns out that in higher dimensions horizon topology cannot be spherical but it has instead to be product of 2-spheres so as to retain radial symmetry of spacetime. In this letter we wish to present a new solution of pure Gauss–Bonnet $$\Lambda $$ Λ -vacuum equation describing a black hole with NUT charge. It has three interesting cases: (a) black hole with both event and cosmological horizons with singularity being hidden behind the former, (b) a regular spacetime free of both horizon and singularity, and (c) black hole with event horizon without singularity and cosmological horizon. Singularity here is always non-centric at $$r \ne 0$$ r ≠ 0 .


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Hiroshi Isono ◽  
Hoiki Madison Liu ◽  
Toshifumi Noumi

Abstract We study wavefunctions of heavy scalars on de Sitter spacetime and their implications to dS/CFT correspondence. In contrast to light fields in the complementary series, heavy fields in the principal series oscillate outside the cosmological horizon. As a consequence, the quadratic term in the wavefunction does not follow a simple scaling and so it is hard to identify it with a conformal two-point function. In this paper, we demonstrate that it should be interpreted as a two-point function on a cyclic RG flow which is obtained by double-trace deformations of the dual CFT. This is analogous to the situation in nonrelativistic AdS/CFT with a bulk scalar whose mass squared is below the Breitenlohner-Freedman (BF) bound. We also provide a new dS/CFT dictionary relating de Sitter two-point functions and conformal two-point functions in the would-be dual CFT.


Author(s):  
Francesco Gozzini ◽  
Francesca Vidotto

We study the fluctuations and the correlations between spatial regions generated in the primordial quantum gravitational era of the universe. We point out that these can be computed using the Lorentzian dynamics defined by the Loop Quantum Gravity amplitudes. We evaluate these amplitudes numerically in the deep quantum regime. Surprisingly, we find large fluctuations and strong correlations, although not maximal. This suggests the possibility that early quantum gravity effects might be sufficient to account for structure formation and solve the cosmological horizon problem.


2021 ◽  
Vol 103 (4) ◽  
Author(s):  
Artyom V. Astashenok ◽  
Sergei D. Odintsov ◽  
V. K. Oikonomou

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Vijay Balasubramanian ◽  
Arjun Kar ◽  
Tomonori Ugajin

Abstract We consider black holes in 2d de Sitter JT gravity coupled to a CFT, and entangled with matter in a disjoint non-gravitating universe. Tracing out the entangling matter leaves the CFT in a density matrix whose stress tensor backreacts on the de Sitter geometry, lengthening the wormhole behind the black hole horizon. Naively, the entropy of the entangling matter increases without bound as the strength of the entanglement increases, but the monogamy property predicts that this growth must level off. We compute the entropy via the replica trick, including wormholes between the replica copies of the de Sitter geometry, and find a competition between conventional field theory entanglement entropy and the surface area of extremal “islands” in the de Sitter geometry. The black hole and cosmological horizons both play a role in generating such islands in the backreacted geometry, and have the effect of stabilizing the entropy growth as required by monogamy. We first show this in a scenario in which the de Sitter spatial section has been decompactified to an interval. Then we consider the compact geometry, and argue for a novel interpretation of the island formula in the context of closed universes that recovers the Page curve. Finally, we comment on the application of our construction to the cosmological horizon in empty de Sitter space.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
Yubo Ma ◽  
Yang Zhang ◽  
Lichun Zhang ◽  
Liang Wu ◽  
Ying Gao ◽  
...  

AbstractIt is well known that de Sitter(dS) black holes generally have a black hole horizon and a cosmological horizon, both of which have Hawking radiation. But the radiation temperature of the two horizons is generally different, so dS black holes do not meet the requirements of thermal equilibrium stability, which brings certain difficulties to the study of the thermodynamic characteristics of black holes. In this paper, dS black hole is regarded as a thermodynamic system, and the effective thermodynamic quantities of the system are obtained. The influence of various state parameters on the effective thermodynamic quantities in the massive gravity space-time is discussed. The condition of the phase transition of the de Sitter black hole in massive gravity space-time is given. We consider that the total entropy of the dS black hole is the sum of the corresponding entropy of the two horizons plus an extra term from the correlation of the two horizons. By comparing the entropic force of interaction between black hole horizon and the cosmological horizon with Lennard-Jones force between two particles, we find that the change rule of entropic force between the two system is surprisingly the same. The research will help us to explore the real reason of accelerating expansion of the universe.


Sign in / Sign up

Export Citation Format

Share Document