scholarly journals Gauge invariant perturbation theory and non-critical string models of Yang-Mills theories

2010 ◽  
Vol 2010 (4) ◽  
Author(s):  
Adrián R. Lugo ◽  
Mauricio B. Sturla
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Christoph Chiaffrino ◽  
Olaf Hohm ◽  
Allison F. Pinto

Abstract We show that the perturbative expansion of general gauge theories can be expressed in terms of gauge invariant variables to all orders in perturbations. In this we generalize techniques developed in gauge invariant cosmological perturbation theory, using Bardeen variables, by interpreting the passing over to gauge invariant fields as a homotopy transfer of the strongly homotopy Lie algebras encoding the gauge theory. This is illustrated for Yang-Mills theory, gravity on flat and cosmological backgrounds and for the massless sector of closed string theory. The perturbation lemma yields an algorithmic procedure to determine the higher corrections of the gauge invariant variables and the action in terms of these.


2006 ◽  
Vol 21 (23n24) ◽  
pp. 4627-4761 ◽  
Author(s):  
OLIVER J. ROSTEN

Within the framework of the Exact Renormalization Group, a manifestly gauge invariant calculus is constructed for SU (N) Yang–Mills. The methodology is comprehensively illustrated with a proof, to all orders in perturbation theory, that the β function has no explicit dependence on either the seed action or details of the covariantization of the cutoff. The cancellation of these nonuniversal contributions is done in an entirely diagrammatic fashion.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Emel Altas ◽  
Ercan Kilicarslan ◽  
Bayram Tekin

AbstractWe construct the gauge-invariant electric and magnetic charges in Yang–Mills theory coupled to cosmological general relativity (or any other geometric gravity), extending the flat spacetime construction of Abbott and Deser (Phys Lett B 116:259–263, 1982). For non-vanishing background gauge fields, the charges receive non-trivial contribution from the gravity part. In addition, we study the constraints on the first order perturbation theory and establish the conditions for linearization instability: that is the validity of the first order perturbation theory.


2012 ◽  
Vol 21 (11) ◽  
pp. 1242004 ◽  
Author(s):  
KOUJI NAKAMURA

An outline of a proof of the local decomposition of linear metric perturbations into gauge-invariant and gauge-variant parts on an arbitrary background spacetime is briefly explained. We explicitly construct the gauge-invariant and gauge-variant parts of the linear metric perturbations based on some assumptions. We also point out the zero-mode problem is an essential problem to globalize of this decomposition of linear metric perturbations. The resolution of this zero-mode problem implies the possibility of the development of the higher-order gauge-invariant perturbation theory on an arbitrary background spacetime in a global sense.


Sign in / Sign up

Export Citation Format

Share Document