scholarly journals Higher spin black hole entropy in three dimensions

2013 ◽  
Vol 2013 (4) ◽  
Author(s):  
Alfredo Pérez ◽  
David Tempo ◽  
Ricardo Troncoso
2005 ◽  
Vol 14 (12) ◽  
pp. 2301-2305
Author(s):  
JOHN SWAIN

Black hole thermodynamics suggests that the maximum entropy that can be contained in a region of space is proportional to the area enclosing it rather than its volume. We argue that this follows naturally from loop quantum gravity and a result of Kolmogorov and Bardzin' on the the realizability of networks in three dimensions. This represents an alternative to other approaches in which some sort of correlation between field configurations helps limit the degrees of freedom within a region. It also provides an approach to thinking about black hole entropy in terms of states inside rather than on its surface. Intuitively, a spin network complicated enough to imbue a region with volume only lets that volume grow as quickly as the area bounding it.


2012 ◽  
Vol 2012 (2) ◽  
Author(s):  
Francisco Correa ◽  
Cristián Martínez ◽  
Ricardo Troncoso

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 630
Author(s):  
Constantino Tsallis

In the present Reply we restrict our focus only onto the main erroneous claims by Pessoa and Costa in their recent Comment (Entropy 2020, 22, 1110).


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 858
Author(s):  
Dongshan He ◽  
Qingyu Cai

In this paper, we present a derivation of the black hole area entropy with the relationship between entropy and information. The curved space of a black hole allows objects to be imaged in the same way as camera lenses. The maximal information that a black hole can gain is limited by both the Compton wavelength of the object and the diameter of the black hole. When an object falls into a black hole, its information disappears due to the no-hair theorem, and the entropy of the black hole increases correspondingly. The area entropy of a black hole can thus be obtained, which indicates that the Bekenstein–Hawking entropy is information entropy rather than thermodynamic entropy. The quantum corrections of black hole entropy are also obtained according to the limit of Compton wavelength of the captured particles, which makes the mass of a black hole naturally quantized. Our work provides an information-theoretic perspective for understanding the nature of black hole entropy.


1991 ◽  
Vol 06 (33) ◽  
pp. 3039-3045 ◽  
Author(s):  
JISHNU DEY ◽  
MIRA DEY ◽  
MARCELO SCHIFFER ◽  
LAURO TOMIO

The entropy bound from black hole thermodynamics can be invoked to set limits for temperatures at which hadrons can survive as a confined system. We find that this implies that the pion can be formed in heavy ion collisions, much later than heavier mesons, for example the ρ-meson, when the fireball is cooler. The temperature found in a simple model agree qualitatively with experiment. We also suggest that this may be the reason why in pion interferometry experiments the space-time volume of the pion source seems large.


2008 ◽  
Vol 77 (6) ◽  
Author(s):  
Tatsuo Azeyanagi ◽  
Tatsuma Nishioka ◽  
Tadashi Takayanagi

2001 ◽  
Vol 64 (12) ◽  
Author(s):  
Daniel Kabat ◽  
Gilad Lifschytz ◽  
David A. Lowe

2006 ◽  
Vol 24 (1) ◽  
pp. 243-251 ◽  
Author(s):  
Alejandro Corichi ◽  
Jacobo Díaz-Polo ◽  
Enrique Fernández-Borja

Sign in / Sign up

Export Citation Format

Share Document