scholarly journals Exact properties of an integrated correlator in $$ \mathcal{N} $$ = 4 SU(N) SYM

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Daniele Dorigoni ◽  
Michael B. Green ◽  
Congkao Wen

Abstract We present a novel expression for an integrated correlation function of four superconformal primaries in SU(N) $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills ($$ \mathcal{N} $$ N = 4 SYM) theory. This integrated correlator, which is based on supersymmetric localisation, has been the subject of several recent developments. In this paper the correlator is re-expressed as a sum over a two dimensional lattice that is valid for all N and all values of the complex Yang-Mills coupling $$ \tau =\theta /2\pi +4\pi i/{g}_{\mathrm{YM}}^2 $$ τ = θ / 2 π + 4 πi / g YM 2 . In this form it is manifestly invariant under SL(2, ℤ) Montonen-Olive duality. Furthermore, it satisfies a remarkable Laplace-difference equation that relates the SU(N) correlator to the SU(N + 1) and SU(N − 1) correlators. For any fixed value of N the correlator can be expressed as an infinite series of non-holomorphic Eisenstein series, $$ E\left(s;\tau, \overline{\tau}\right) $$ E s τ τ ¯ with s ∈ ℤ, and rational coefficients that depend on the values of N and s. The perturbative expansion of the integrated correlator is an asymptotic but Borel summable series, in which the n-loop coefficient of order (gYM/π)2n is a rational multiple of ζ(2n + 1). The n = 1 and n = 2 terms agree precisely with results determined directly by integrating the expressions in one-loop and two-loop perturbative $$ \mathcal{N} $$ N = 4 SYM field theory. Likewise, the charge-k instanton contributions (|k| = 1, 2, . . .) have an asymptotic, but Borel summable, series of perturbative corrections. The large-N expansion of the correlator with fixed τ is a series in powers of $$ {N}^{\frac{1}{2}-\mathrm{\ell}} $$ N 1 2 − ℓ (ℓ ∈ ℤ) with coefficients that are rational sums of $$ E\left(s;\tau, \overline{\tau}\right) $$ E s τ τ ¯ with s ∈ ℤ + 1/2. This gives an all orders derivation of the form of the recently conjectured expansion. We further consider the ’t Hooft topological expansion of large-N Yang-Mills theory in which $$ \lambda ={g}_{\mathrm{YM}}^2N $$ λ = g YM 2 N is fixed. The coefficient of each order in the 1/N expansion can be expanded as a series of powers of λ that converges for |λ| < π2. For large λ this becomes an asymptotic series when expanded in powers of $$ 1/\sqrt{\lambda } $$ 1 / λ with coefficients that are again rational multiples of odd zeta values, in agreement with earlier results and providing new ones. We demonstrate that the large-λ series is not Borel summable, and determine its resurgent non-perturbative completion, which is $$ O\left(\exp \left(-2\sqrt{\lambda}\right)\right) $$ O exp − 2 λ .

2011 ◽  
Vol 126 (4) ◽  
pp. 597-611 ◽  
Author(s):  
M. Hanada ◽  
S. Matsuura ◽  
F. Sugino

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Daniele Dorigoni ◽  
Michael B. Green ◽  
Congkao Wen

Abstract The exact expressions for integrated maximal U(1)Y violating (MUV) n-point correlators in SU(N) $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills theory are determined. The analysis generalises previous results on the integrated correlator of four superconformal primaries and is based on supersymmetric localisation. The integrated correlators are functions of N and τ = θ/(2π) + 4πi/$$ {g}_{YM}^2 $$ g YM 2 , and are expressed as two-dimensional lattice sums that are modular forms with holomorphic and anti-holomorphic weights (w, −w) where w = n − 4. The correlators satisfy Laplace-difference equations that relate the SU(N+1), SU(N) and SU(N−1) expressions and generalise the equations previously found in the w = 0 case. The correlators can be expressed as infinite sums of Eisenstein modular forms of weight (w, −w). For any fixed value of N the perturbation expansion of this correlator is found to start at order ($$ {g}_{YM}^2 $$ g YM 2 N)w. The contributions of Yang-Mills instantons of charge k > 0 are of the form qkf(gYM), where q = e2πiτ and f(gYM) = O($$ {g}_{YM}^{-2w} $$ g YM − 2 w ) when $$ {g}_{YM}^2 $$ g YM 2 ≪ 1. Anti-instanton contributions have charge k < 0 and are of the form $$ {\overline{q}}^{\left|k\right|}\hat{f}\left({g}_{YM}\right) $$ q ¯ k f ̂ g YM , where $$ \hat{f}\left({g}_{YM}\right)=O\left({g}_{YM}^{2w}\right) $$ f ̂ g YM = O g YM 2 w when $$ {g}_{YM}^2 $$ g YM 2 ≪ 1. Properties of the large-N expansion are in agreement with expectations based on the low energy expansion of flat-space type IIB superstring amplitudes. We also comment on the identification of n-point free-field MUV correlators with the integrands of (n − 4)-loop perturbative contributions to the four-point correlator. In particular, we emphasise the important rôle of SL(2, ℤ)-covariance in the construction.


2005 ◽  
Vol 20 (01) ◽  
pp. 29-41 ◽  
Author(s):  
TOSHIHIRO MATSUO ◽  
SO MATSUURA

We discuss the equivalence between a string theory and the two-dimensional Yang–Mills theory with SU (N) gauge group for finite N. We find a sector which can be interpreted as a sum of covering maps from closed string worldsheets to the target space, whose covering number is less than N. This gives an asymptotic expansion of 1/N whose large N limit becomes the chiral sector defined by Gross and Taylor. We also discuss that the residual part of the partition function provides the nonperturbative corrections to the perturbative expansion.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


Sign in / Sign up

Export Citation Format

Share Document