scholarly journals Large N gauge theories with a dense spectrum and the weak gravity conjecture

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Prarit Agarwal ◽  
Jaewon Song

Abstract We find large N gauge theories containing a large number of operators within a band of low conformal dimensions. One of such examples is the four-dimensional $$ \mathcal{N} $$ N = 1 supersymmetric SU(N) gauge theory with one adjoint and a pair of fundamental/anti-fundamental chiral multiplets. This theory flows to a superconformal theory in the infrared upon a superpotential coupling with gauge singlets. The gap in the low-lying spectrum scales as 1/N and the central charges scale as O(N1) contrary to the usual O(N2) scaling of ordinary gauge theory coming from the matrix degree of freedom. We find the AdS version of the Weak Gravity Conjecture (WGC) holds for this theory, although it cannot be holographically dual to supergravity. This supports the validity of WGC in a more general theory of quantum gravity.

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Nathaniel Craig ◽  
Isabel Garcia Garcia ◽  
Graham D. Kribs

Abstract Massive U(1) gauge theories featuring parametrically light vectors are suspected to belong in the Swampland of consistent EFTs that cannot be embedded into a theory of quantum gravity. We study four-dimensional, chiral U(1) gauge theories that appear anomalous over a range of energies up to the scale of anomaly-cancelling massive chiral fermions. We show that such theories must be UV-completed at a finite cutoff below which a radial mode must appear, and cannot be decoupled — a Stückelberg limit does not exist. When the infrared fermion spectrum contains a mixed U(1)-gravitational anomaly, this class of theories provides a toy model of a boundary into the Swampland, for sufficiently small values of the vector mass. In this context, we show that the limit of a parametrically light vector comes at the cost of a quantum gravity scale that lies parametrically below MP1, and our result provides field theoretic evidence for the existence of a Swampland of EFTs that is disconnected from the subset of theories compatible with a gravitational UV-completion. Moreover, when the low energy theory also contains a U(1)3 anomaly, the Weak Gravity Conjecture scale makes an appearance in the form of a quantum gravity cutoff for values of the gauge coupling above a certain critical size.


2021 ◽  
Author(s):  
Jay Solanki

<div>The potential formulation has significant advantages over field formulation in solving complicated problems in electromagnetic field theory. One essential part of electromagnetic field theory's potential formulation is gauge invariance and gauge theories because it provides an extra degree of freedom. By using this extra degree of freedom, we can solve complicated electromagnetic problems quickly. Thus, it is necessary to include a systematic explanation of gauge theories in teaching electromagnetic theory. However, textbooks usually formulate gauge theories by using Maxwell's equations of electromagnetism, by using vector calculus identities. However, this method of formulation of gauge theories does not give a clear idea about the origin of gauge theories and gauge invariance in electromagnetism. Here the author formulates gauge theories from wave equations of the electric and magnetic fields instead of directly using Maxwell's equations. This method generalizes all gauge theories like Lorenz gauge theory, Coulomb gauge theory, Etc. Gauge theory, because of the way the author derives it, gives a distinct idea about the mathematical origin of the gauge theories and gauge invariance in electromagnetic field theory. Thus, the author reviews the origin of gauge theories in electromagnetic field theory and develops a distinct and effective method to introduce gauge theory in the teaching of electromagnetic field theory that can provide better understanding of the topic to undergraduate students.</div><div><br></div>


2015 ◽  
Vol 24 (06) ◽  
pp. 1530017 ◽  
Author(s):  
Marco Bochicchio

We review a number of old and new concepts in quantum gauge theories, some of which are well-established but not widely appreciated, some are most recent, that may have analogs in gauge formulations of quantum gravity, loop quantum gravity, and their topological versions, and may be of general interest. Such concepts involve noncommutative gauge theories and their relation to the large-N limit, loop equations and the change to the anti-selfdual (ASD) variables also known as Nicolai map, topological field theory (TFT) and its relation to localization and Morse–Smale–Floer homology, with an emphasis both on the mathematical aspects and the physical meaning. These concepts, assembled in a new way, enter a line of attack to the problem of the mass gap in large-NSU(N) Yang–Mills (YM), that is reviewed as well. Algebraic considerations furnish a measure of the mathematical complexity of a complete solution of large-NSU(N) YM: In the large-N limit of pure SU(N) YM the ambient algebra of Wilson loops is known to be a type II1 nonhyperfinite factor. Nevertheless, for the mass gap problem at the leading 1/N order, only the subalgebra of local gauge-invariant single-trace operators matters. The connected two-point correlators in this subalgebra must be an infinite sum of propagators of free massive fields, since the interaction is subleading in [Formula: see text], a vast simplification. It is an open problem, determined by the growth of the degeneracy of the spectrum, whether the aforementioned local subalgebra is in fact hyperfinite. Moreover, the sum of free propagators that occurs in the two-point correlators in the aforementioned local subalgebra must be asymptotic for large momentum to the result implied by the asymptotic freedom and the renormalization group: This fundamental constraint fixes asymptotically the residues of the poles of the propagators in terms of the mass spectrum and of the anomalous dimensions of the local operators. For the mass gap problem, in the search of a hyperfinite subalgebra containing the scalar sector of large-N YM, a major role is played by the existence of a TFT underlying the large-N limit of YM, with twisted boundary conditions on a torus or, which is the same by Morita duality, on a noncommutative torus. The TFT is trivial at the leading large-N order and localized on a set of critical points by means of a quantum version of Morse–Smale–Floer homology, that involves loop equations in the ASD variables. A hyperfinite sector arises by fluctuations around the trivial TFT, in which the joint spectrum of scalar and pseudoscalar glueballs is linear in the square of the masses [Formula: see text] with degeneracy k = 1, 2,…, and the two-point correlator satisfies the aforementioned fundamental constraint arising by the asymptotic freedom and the renormalization group.


2001 ◽  
Vol 16 (supp01c) ◽  
pp. 913-915 ◽  
Author(s):  
F. A. Chishtie ◽  
V. Elias ◽  
V. A. Miransky ◽  
T. G. Steele

Padé-approximant treatments of the known terms of the QCD β-function are seen to develop possible infrared fixed point structure only if the number of fermion flavours is sufficiently large. This flavour threshold is seen to be between six and nine flavours, depending upon both the specific choice of approximant as well as on the presently-unknown five-loop β-function contribution. Below this flavour threshold, Padé approximants based upon the QCD β-function manifest the same infrared attractor structure as that which characterizes the exact NSVZ β-function of supersymmetric gluodynamics. Such infrared attractor structure is also seen to characterize Padé-approximant treatments of vector SU(N) gauge theory in the large N limit, suggesting common infrared dynamics for the strong and weak phases of this theory.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Tom Rudelius ◽  
Shu-Heng Shao

Abstract In many gauge theories, the existence of particles in every representation of the gauge group (also known as completeness of the spectrum) is equivalent to the absence of one-form global symmetries. However, this relation does not hold, for example, in the gauge theory of non-abelian finite groups. We refine this statement by considering topological operators that are not necessarily associated with any global symmetry. For discrete gauge theory in three spacetime dimensions, we show that completeness of the spectrum is equivalent to the absence of certain Gukov-Witten topological operators. We further extend our analysis to four and higher spacetime dimensions. Since topological operators are natural generalizations of global symmetries, we discuss evidence for their absence in a consistent theory of quantum gravity.


2021 ◽  
Author(s):  
Jay Solanki

<div>The potential formulation has significant advantages over field formulation in solving complicated problems in electromagnetic field theory. One essential part of electromagnetic field theory's potential formulation is gauge invariance and gauge theories because it provides an extra degree of freedom. By using this extra degree of freedom, we can solve complicated electromagnetic problems quickly. Thus, it is necessary to include a systematic explanation of gauge theories in teaching electromagnetic theory. However, textbooks usually formulate gauge theories by using Maxwell's equations of electromagnetism, by using vector calculus identities. However, this method of formulation of gauge theories does not give a clear idea about the origin of gauge theories and gauge invariance in electromagnetism. Here the author formulates gauge theories from wave equations of the electric and magnetic fields instead of directly using Maxwell's equations. This method generalizes all gauge theories like Lorenz gauge theory, Coulomb gauge theory, Etc. Gauge theory, because of the way the author derives it, gives a distinct idea about the mathematical origin of the gauge theories and gauge invariance in electromagnetic field theory. Thus, the author reviews the origin of gauge theories in electromagnetic field theory and develops a distinct and effective method to introduce gauge theory in the teaching of electromagnetic field theory that can provide better understanding of the topic to undergraduate students.</div><div><br></div>


Author(s):  
Kazutoshi Ohta ◽  
Norisuke Sakai

Abstract We study the moduli space volume of BPS vortices in quiver gauge theories on compact Riemann surfaces. The existence of BPS vortices imposes constraints on the quiver gauge theories. We show that the moduli space volume is given by a vev of a suitable cohomological operator (volume operator) in a supersymmetric quiver gauge theory, where BPS equations of the vortices are embedded. In the supersymmetric gauge theory, the moduli space volume is exactly evaluated as a contour integral by using the localization. Graph theory is useful to construct the supersymmetric quiver gauge theory and to derive the volume formula. The contour integral formula of the volume (generalization of the Jeffrey-Kirwan residue formula) leads to the Bradlow bounds (upper bounds on the vorticity by the area of the Riemann surface divided by the intrinsic size of the vortex). We give some examples of various quiver gauge theories and discuss properties of the moduli space volume in these theories. Our formula are applied to the volume of the vortex moduli space in the gauged non-linear sigma model with CPN target space, which is obtained by a strong coupling limit of a parent quiver gauge theory. We also discuss a non-Abelian generalization of the quiver gauge theory and “Abelianization” of the volume formula.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Brandon S. DiNunno ◽  
Niko Jokela ◽  
Juan F. Pedraza ◽  
Arttu Pönni

Abstract We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-N gauge theories. For concreteness, we focus on a simple holographic (2 + 1)-dimensional strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a U(1) gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic c-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.


Sign in / Sign up

Export Citation Format

Share Document