scholarly journals Quantum information probes of charge fractionalization in large-N gauge theories

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Brandon S. DiNunno ◽  
Niko Jokela ◽  
Juan F. Pedraza ◽  
Arttu Pönni

Abstract We study in detail various information theoretic quantities with the intent of distinguishing between different charged sectors in fractionalized states of large-N gauge theories. For concreteness, we focus on a simple holographic (2 + 1)-dimensional strongly coupled electron fluid whose charged states organize themselves into fractionalized and coherent patterns at sufficiently low temperatures. However, we expect that our results are quite generic and applicable to a wide range of systems, including non-holographic. The probes we consider include the entanglement entropy, mutual information, entanglement of purification and the butterfly velocity. The latter turns out to be particularly useful, given the universal connection between momentum and charge diffusion in the vicinity of a black hole horizon. The RT surfaces used to compute the above quantities, though, are largely insensitive to the electric flux in the bulk. To address this deficiency, we propose a generalized entanglement functional that is motivated through the Iyer-Wald formalism, applied to a gravity theory coupled to a U(1) gauge field. We argue that this functional gives rise to a coarse grained measure of entanglement in the boundary theory which is obtained by tracing over (part) of the fractionalized and cohesive charge degrees of freedom. Based on the above, we construct a candidate for an entropic c-function that accounts for the existence of bulk charges. We explore some of its general properties and their significance, and discuss how it can be used to efficiently account for charged degrees of freedom across different energy scales.

2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Henrique Gomes ◽  
Aldo Riello

Gauge theories possess nonlocal features that, in the presence of boundaries, inevitably lead to subtleties. We employ geometric methods rooted in the functional geometry of the phase space of Yang-Mills theories to: (1) characterize a basis for quasilocal degrees of freedom (dof) that is manifestly gauge-covariant also at the boundary; (2) tame the non-additivity of the regional symplectic forms upon the gluing of regions; and to (3) discuss gauge and global charges in both Abelian and non-Abelian theories from a geometric perspective. Naturally, our analysis leads to splitting the Yang-Mills dof into Coulombic and radiative. Coulombic dof enter the Gauss constraint and are dependent on extra boundary data (the electric flux); radiative dof are unconstrained and independent. The inevitable non-locality of this split is identified as the source of the symplectic non-additivity, i.e. of the appearance of new dof upon the gluing of regions. Remarkably, these new dof are fully determined by the regional radiative dof only. Finally, a direct link is drawn between this split and Dirac's dressed electron.


2004 ◽  
Vol 19 (25) ◽  
pp. 4323-4354
Author(s):  
MASAKI YASUÈ

In strongly coupled supersymmetric SO (Nc) gauge theories with Nf-quarks for Nc-2≤Nf(≤3(Nc-2)/2), their low-energy physics can be described by Nambu–Goldstone superfields associated with dynamical flavor symmetry breaking, which should be compared with the absence of flavor symmetry breaking in the conventional description in terms of magnetic degrees of freedom. The presence of the flavor symmetry breaking is confirmed by the well-known instanton effects in SO (Nc) with Nf=Nc-2, which are also described by our proposed effective superpotential. For Nf≥Nc-1, our effective superpotentials utilize baryonic configurations as well as mesons composed of two quarks. The baryonic configurations are supplied by "diquarks" made of Nc-1 quarks for Nf=Nc-1 and by baryons composed of Nc quarks for Nc≥Nf. It is argued that our effective superpotentials exhibit the holomorphic decoupling property, the anomaly-matching property and correct description of instanton effects in SO (Nc) when Nf-Nc+2 quarks become massive if Nf≥Nc-1.


2002 ◽  
Vol 17 (16) ◽  
pp. 2113-2164 ◽  
Author(s):  
A. KOVNER

This review describes the role of magnetic symmetry in (2+1)-dimensional gauge theories. In confining theories without matter fields in fundamental representation the magnetic symmetry is spontaneously broken. Under some mild assumptions, the low-energy dynamics is determined universally by this spontaneous breaking phenomenon. The degrees of freedom in the effective theory are magnetic vortices. Their role in confining dynamics is similar to that played by pions and σ in the chiral symmetry breaking dynamics. I give an explicit derivation of the effective theory in (2+1)-dimensional weakly coupled confining models and argue that it remains qualitatively the same in strongly coupled (2+1)-dimensional gluodynamics. Confinement in this effective theory is a very simple classical statement about the long range interaction between topological solitons, which follows (as a result of a simple direct classical calculation) from the structure of the effective Lagrangian. I show that if fundamentally charged dynamical fields are present the magnetic symmetry becomes local rather than global. The modifications to the effective low energy description in the case of heavy dynamical fundamental matter are discussed. This effective Lagrangian naturally yields a bag like description of baryonic excitations. I also discuss the fate of the magnetic symmetry in gauge theories with the Chern–Simons term.


2013 ◽  
Vol 1535 ◽  
Author(s):  
Philippe Derreumaux

ABSTRACTProteins are complex, yet elegant, machines fine-tuned by evolution to properly fulfill a variety of tasks in the crowded cellular environment. These are, however, very challenging numerically due to their dimension, number of degrees of freedom and the wide range of relevant time scales. With aging, some proteins misfold and form harmful amyloid aggregates associated with multiple neurodegenerative diseases, and in particular Alzheimer’s, which challenge our society today. Here, I present the coarse-grained OPEP (Optimized Potential for Efficient peptide structure Prediction) force field and what we can learn from OPEP simulations to get insights into the self-assembly of amyloid peptides.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Pouria Dadras

Abstract In this paper, we consider the evolution of the thermofield-double state under the double-traced operator that connects its both sides. We will compute the entanglement entropy of the resulting state using the replica trick for the large N field theory. To leading order, it can be computed from the two-point function of the theory, where, in CFTs, it is fixed by the symmetries. Due to the exponential decay of the interaction, the entanglement entropy saturates about the thermal time after the interaction is on. Next, we restrict ourselves to one dimension and assume that the theory at strong coupling is effectively described by the Schwarzian action. We then compute the coarse-grained entropy of the resulting state using the four-point function. The equality of the two entropies implies that the double-traced operators in our theory act coherently. In AdS/CFT correspondence where the thermofield-double state corresponds to a two-sided black hole, the action of a double-traced operator corresponds to shrinking or expanding the black hole in the bulk.


1997 ◽  
Vol 12 (12) ◽  
pp. 2135-2291 ◽  
Author(s):  
Gordon W. Semenoff ◽  
Richard J. Szabo

We review a class of matrix models whose degrees of freedom are matrices with anti-commuting elements. We discuss the properties of the adjoint fermion one-matrix, two-matrix and gauge-invariant D-dimensional matrix models at large N and compare them with their bosonic counterparts, which are the more familiar Hermitian matrix models. We derive and solve the complete sets of loop equations for the correlators of these models and use these equations to examine critical behavior. The topological large N expansions are also constructed and their relation to other aspects of modern string theory, such as integrable hierarchies, is discussed. We use these connections to discuss the applications of these matrix models to string theory and induced gauge theories. We argue that as such the fermionic matrix models may provide a novel generalization of the discretized random surface representation of quantum gravity in which the genus sum alternates and the sums over genera for correlators have better convergence properties than their Hermitian counterparts. We discuss the use of adjoint fermions instead of adjoint scalars to study induced gauge theories. We also discuss two classes of dimensionally reduced models, a fermionic vector model and a supersymmetric matrix model, and discuss their applications to the branched polymer phase of string theories in target space dimensions D > 1 and also to the meander problem.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Stefano Bolognesi ◽  
Kenichi Konishi ◽  
Andrea Luzio

Abstract We present a simple argument which seems to favor, when applied to a large class of strongly-coupled chiral gauge theories, a dynamical-Higgs-phase scenario, characterized by certain bifermion condensates. Flavor symmetric confining vacua described in the infrared by a set of baryonlike massless composite fermions saturating the conventional ’t Hooft anomaly matching equations, appear instead disfavored. Our basic criterion is that it should be possible to write a strong-anomaly effective action, analogous to the one used in QCD to describe the solution of the U(1)A problem in the low-energy effective action, by using the low-energy degrees of freedom in the hypothesized infrared theory. We also comment on some well-known ideas such as the complementarity and the large N planar dominance in the context of these chiral gauge theories. Some striking analogies and contrasts between the massless QCD and chiral gauge theories seem to emerge from this discussion.


1997 ◽  
Vol 12 (29) ◽  
pp. 5171-5182 ◽  
Author(s):  
N. Seiberg

Recently the vacuum structure of a large class of four-dimensional (supersymmetric) quantum field theories was determined exactly. These theories exhibit a wide range of interesting new physical phenomena. One of the main new insights is the role of "electric–magnetic duality." In its simplest form it describes the long distance behavior of some strongly coupled, and hence complicated, "electric theories" in terms of weakly coupled "magnetic theories." This understanding sheds new light on confinement and the Higgs mechanism and uncovers new phases of four-dimensional gauge theories. We review these developments and speculate on the outlook.


2001 ◽  
Vol 16 (27) ◽  
pp. 4365-4376 ◽  
Author(s):  
N. SEIBERG

Recently the vacuum structure of a large class of four-dimensional (supersymmetric) quantum field theories was determined exactly. These theories exhibit a wide range of interesting new physical phenomena. One of the main new insights is the role of "electric–magnetic duality." In its simplest form it describes the long distance behavior of some strongly coupled, and hence complicated, "electric theories" in terms of weakly coupled "magnetic theories." This understanding sheds new light on confinement and the Higgs mechanism and uncovers new phases of four-dimensional gauge theories. We review these developments and speculate on the outlook.


Sign in / Sign up

Export Citation Format

Share Document