scholarly journals Effective field theory of stochastic diffusion from gravity

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jewel K. Ghosh ◽  
R. Loganayagam ◽  
Siddharth G. Prabhu ◽  
Mukund Rangamani ◽  
Akhil Sivakumar ◽  
...  

Abstract Planar black holes in AdS have long-lived quasinormal modes which capture the physics of charge and momentum diffusion in the dual field theory. How should we characterize the effective dynamics of a probe system coupled to the conserved currents of the dual field theory? Specifically, how would such a probe record the long-lived memory of the black hole and its Hawking fluctuations? We address this question by exhibiting a universal gauge invariant framework which captures the physics of stochastic diffusion in holography: a designer scalar with a gravitational coupling governed by a single parameter, the Markovianity index. We argue that the physics of gauge and gravitational perturbations of a planar Schwarzschild-AdS black hole can be efficiently captured by such designer scalars. We demonstrate that this framework allows one to decouple, at the quadratic order, the long-lived quasinormal and Hawking modes from the short-lived ones. It furthermore provides a template for analyzing fluctuating open quantum field theories with memory. In particular, we use this set-up to analyze the diffusive Hawking photons and gravitons about a planar Schwarzschild-AdS black hole and derive the quadratic effective action that governs fluctuating hydrodynamics of the dual CFT. Along the way we also derive results relevant for probes of hyperscaling violating backgrounds at finite temperature.

2019 ◽  
Vol 2019 (2) ◽  
Author(s):  
Gabriele Franciolini ◽  
Lam Hui ◽  
Riccardo Penco ◽  
Luca Santoni ◽  
Enrico Trincherini

2018 ◽  
Vol 33 (36) ◽  
pp. 1850219
Author(s):  
Biplab Paik

In this paper, we propose a UV complete, quantum improved picture of a black hole geometry that conforms to the IR gravity of effective field theory. Our work builds on identifying an effective space-distributed notion of black hole fluid in quantum improved regular Einstein gravity and its theoretical correspondence with a cosmology inspired power law fluctuation of matter. Hence, we make use of phenomenological asymptotic scales of matter fluctuation in static space to consequently derive a UV complete line-element of black hole space–time. In this appraisal, it gets explicit how principle of causality is preserved even while there is an effective spread of black hole fluid across horizon(s). Gravity changes from its conventional classical geometry-state to a quantum masked profile across a hypersurface of characteristic radius [Formula: see text]. We make analyses that probe the newly proposed quantum improved gravity in the contexts of regularity of Einstein fields, complete predictability of Hawking radiation process, and first law of black hole thermodynamics. It emerges that quantum black hole geometry self-regulates a regular timelike core that is abide by every quantum theoretical constraint while being flat around its center.


2020 ◽  
pp. 575-621
Author(s):  
Giuseppe Mussardo

Chapter 16 covers the general properties of the integrable quantum field theories, including how an integrable quantum field theory is characterized by an infinite number of conserved charges. These theories are illustrated by means of significant examples, such as the Sine–Gordon model or the Toda field theories based on the simple roots of a Lie algebra. For the deformations of a conformal theory, it shown how to set up an efficient counting algorithm to prove the integrability of the corresponding model. The chapter focuses on two-dimensional models, and uses the term ‘two-dimensional’ to denote both a generic two-dimensional quantum field theory as well as its Euclidean version.


Author(s):  
Jean Zinn-Justin

Chapter 8 discusses effective field theory. This concept is inspired by the theory of critical phenomena in statistical physics and based on renormalization group ideas. The basic idea behind effective field theory is that one starts from a microscopic model involving an infinite number of fluctuating degrees of freedom whose interactions are characterized by a microscopic scale and in which, as a result of interactions, a length that is much larger than the microscopic scale, or, equivalently, a mass much smaller than the characteristic mass scale of the initial model, is generated. The chapter illustrates this topic with examples. It also stresses that all quantum field theories as applied to particle physics or statistical physics are only effective (i.e. not fundamental) theories. Besides the problem of a phi4 type field theory with a large mass field, two more complicated examples are discussed: the Gross–Neveu and the non–linear sigma models.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Jin-Yi Pang ◽  
Jiunn-Wei Chen

AbstractThe renormalization of entanglement entropy of quantum field theories is investigated in the simplest setting with a λϕ4 scalar field theory. The 3+1 dimensional spacetime is separated into two regions by an infinitely flat 2-dimensional interface. The entanglement entropy of the system across the interface has an elegant geometrical interpretation using the replica trick, which requires putting the field theory on a curved spacetime background. We demonstrate that the theory, and hence the entanglement entropy, is renormalizable at order λ once all the relevant operators up to dimension 4 are included in the action. This exercise has a one-to-one correspondence to entanglement entropy interpretation of the black hole entropy which suggests that our treatment is sensible. Our study suggests that entanglement entropy is renormalizable and is a physical quantity.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Ram Brustein ◽  
Yoav Zigdon

Abstract We calculate the entropy of an asymptotically Schwarzschild black hole, using an effective field theory of winding modes in type II string theory. In Euclidean signature, the geometry of the black hole contains a thermal cycle which shrinks towards the horizon. The light excitations thus include, in addition to the metric and the dilaton, also the winding modes around this cycle. The winding modes condense in the near-horizon region and source the geometry of the thermal cycle. Using the effective field theory action and standard thermodynamic relations, we show that the entropy, which is also sourced by the winding modes condensate, is exactly equal to the Bekenstein-Hawking entropy of the black hole. We then discuss some properties of the winding mode condensate and end with an application of our method to an asymptotically linear-dilaton black hole.


2018 ◽  
Vol 2018 (9) ◽  
Author(s):  
C. P. Burgess ◽  
Ryan Plestid ◽  
Markus Rummel

2006 ◽  
Vol 21 (02) ◽  
pp. 297-312 ◽  
Author(s):  
Y. JACK NG ◽  
H. VAN DAM

Neutrices are additive groups of negligible functions that do not contain any constants except 0. Their calculus was developed by van der Corput and Hadamard in connection with asymptotic series and divergent integrals. We apply neutrix calculus to quantum field theory, obtaining finite renormalizations in the loop calculations. For renormalizable quantum field theories, we recover all the usual physically observable results. One possible advantage of the neutrix framework is that effective field theories can be accommodated. Quantum gravity theories will then appear to be more manageable.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Zvi Bern ◽  
Andres Luna ◽  
Radu Roiban ◽  
Chia-Hsien Shen ◽  
Mao Zeng

Author(s):  
Daniel Harlow ◽  
Edgar Shaghoulian

We discuss a recent proposal that the Euclidean gravity approach to quantum gravity is correct if and only if the theory is holographic, providing several examples and general arguments to support the conjecture. This provides a natural mechanism for the low-energy gravitational effective field theory to access a host of deep ultraviolet properties, like the Bekenstein–Hawking entropy of black holes, the unitarity of black hole evaporation, and the lack of exact global symmetries.


Sign in / Sign up

Export Citation Format

Share Document