scholarly journals Holst-MacDowell-Mansouri action for (extended) supergravity with boundaries and super Chern-Simons theory

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
K. Eder ◽  
H. Sahlmann

Abstract In this article, the Cartan geometric approach toward (extended) supergravity in the presence of boundaries will be discussed. In particular, based on new developments in this field, we will derive the Holst variant of the MacDowell-Mansouri action for $$ \mathcal{N} $$ N = 1 and $$ \mathcal{N} $$ N = 2 pure AdS supergravity in D = 4 for arbitrary Barbero-Immirzi parameters. This action turns out to play a crucial role in context of boundaries in the framework of supergravity if one imposes supersymmetry invariance at the boundary. For the $$ \mathcal{N} $$ N = 2 case, it follows that this amounts to the introduction of a θ-topological term to the Yang-Mills sector which explicitly depends on the Barbero-Immirzi parameter. This shows the close connection between this parameter and the θ-ambiguity of gauge theory.We will also discuss the chiral limit of the theory, which turns out to possess some very special properties such as the manifest invariance of the resulting action under an enlarged gauge symmetry. Moreover, we will show that demanding supersymmetry invariance at the boundary yields a unique boundary term corresponding to a super Chern-Simons theory with OSp($$ \mathcal{N} $$ N |2) gauge group. In this context, we will also derive boundary conditions that couple boundary and bulk degrees of freedom and show equivalence to the results found in the D’Auria-Fré approach in context of the non-chiral theory. These results provide a step towards of quantum description of supersymmetric black holes in the framework of loop quantum gravity.

2020 ◽  
Author(s):  
Adémọ́lá Adéìfẹ́ọba

The 2 + 1 Yang-Mills theory allows for an interaction term called the Chern-Simons term. This topological term plays a useful role in understanding the field theoretic description of the excitation of the quantum hall system such as Anyons. While solving the non-Abelian Chern-simons theory is rather complicated, its knotty world allows for a framework for solving it. In the framework, the idea was to relate physical observables with the Jones polynomials. In this note, I will summarize the basic idea leading up to this framework.


1995 ◽  
Vol 73 (5-6) ◽  
pp. 344-348 ◽  
Author(s):  
Yeong-Chuan Kao ◽  
Hsiang-Nan Li

We show that the two-loop contribution to the coefficient of the Chern–Simons term in the effective action of the Yang–Mills–Chern–Simons theory is infrared finite in the background field Landau gauge. We also discuss the difficulties in verifying the conjecture, due to topological considerations, that there are no more quantum corrections to the Chern–Simons term other than the well-known one-loop shift of the coefficient.


2009 ◽  
Vol 24 (07) ◽  
pp. 1309-1331 ◽  
Author(s):  
ANTON M. ZEITLIN

We show explicitly how Batalin–Vilkovisky Yang–Mills action emerges as a homotopy generalization of Chern–Simons theory from the algebraic constructions arising from string field theory.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Leonardo Santilli ◽  
Richard J. Szabo ◽  
Miguel Tierz

Abstract We derive the $$ T\overline{T} $$ T T ¯ -perturbed version of two-dimensional q-deformed Yang-Mills theory on an arbitrary Riemann surface by coupling the unperturbed theory in the first order formalism to Jackiw-Teitelboim gravity. We show that the $$ T\overline{T} $$ T T ¯ -deformation results in a breakdown of the connection with a Chern-Simons theory on a Seifert manifold, and of the large N factorization into chiral and anti-chiral sectors. For the U(N) gauge theory on the sphere, we show that the large N phase transition persists, and that it is of third order and induced by instantons. The effect of the $$ T\overline{T} $$ T T ¯ -deformation is to decrease the critical value of the ’t Hooft coupling, and also to extend the class of line bundles for which the phase transition occurs. The same results are shown to hold for (q, t)-deformed Yang-Mills theory. We also explicitly evaluate the entanglement entropy in the large N limit of Yang-Mills theory, showing that the $$ T\overline{T} $$ T T ¯ -deformation decreases the contribution of the Boltzmann entropy.


2003 ◽  
Vol 18 (33n35) ◽  
pp. 2415-2422 ◽  
Author(s):  
V. P. NAIR

I review the analysis of (2+1)-dimensional Yang-Mills (YM2+1) theory via the use of gauge-invariant matrix variables. The vacuum wavefunction, string tension, the propagator mass for gluons, its relation to the magnetic mass for YM3+1at nonzero temperature and the extension of our analysis to the Yang-Mills-Chern-Simons theory are discussed. A possible extension to 3 + 1 dimensions is also briefly considered.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Meer Ashwinkumar ◽  
Kee-Seng Png ◽  
Meng-Chwan Tan

Abstract We show that the four-dimensional Chern-Simons theory studied by Costello, Witten and Yamazaki, is, with Nahm pole-type boundary conditions, dual to a boundary theory that is a three-dimensional analogue of Toda theory with a novel 3d W-algebra symmetry. By embedding four-dimensional Chern-Simons theory in a partial twist of the five-dimensional maximally supersymmetric Yang-Mills theory on a manifold with corners, we argue that this three-dimensional Toda theory is dual to a two-dimensional topological sigma model with A-branes on the moduli space of solutions to the Bogomolny equations. This furnishes a novel 3d-2d correspondence, which, among other mathematical implications, also reveals that modules of the 3d W-algebra are modules for the quantized algebra of certain holomorphic functions on the Bogomolny moduli space.


2020 ◽  
Vol 110 (7) ◽  
pp. 1559-1584
Author(s):  
Philippe Mathieu ◽  
Laura Murray ◽  
Alexander Schenkel ◽  
Nicholas J. Teh

Sign in / Sign up

Export Citation Format

Share Document